PRIMER NOTE Isolation and characterization of microsatellite DNA markers in the malaria vector *Anopheles sacharovi*

M.-L. GUILLEMIN,*C. SEVERINI,*A. BERTHOMIEU,*M. RAYMOND* and M. WEILL*

*Institut des Sciences de l'Evolution, Laboratoire de Génétique et Environnement, CC065, UMR CNRS 5554, Université de Montpellier II, 34095 Montpellier, France, †Laboratorio di Parassitologia, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy

Abstract

The mosquito *Anopheles sacharovi*, a member of the *A. maculipennis* complex, is an important malaria vector in the Middle East. Here we describe the isolation of 15 microsatellite polymorphic loci from the *A. sacharovi* genome, displaying a high among-individual diversity (0.30–0.92) in a sample from Turkey. Seven loci displayed a significant departure from Hardy–Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining eight loci are good candidates for further genetic studies in this species.

Keywords: Anopheles sacharovi, malaria, microsatellites, polymorphism

Received 6 February 2003; revision accepted 10 March 2003

The most important malaria vectors in the geographical area represented by the World Health Organization European Region, including the Middle East and the countries of the former Russian Federation, the Newly Independent States (NIS), belong to a group of anopheline mosquitoes, i.e. the Anopheles maculipennis complex (Romi et al. 2000). Species from this group, A. maculipennis s.s. and A. sacharovi, were responsible for the recent Plasmodium vivax malaria outbreaks in Turkey, Armenia, Azerbaijan and other NIS. The quite high frequency of these outbreaks, resulting from the difficulties of the local health system in implementing efficacious control measures together with massive population movements, could represent a situation of high risk for malaria reintroduction in European temperate areas, where potential vectors are still present (Majori et al. 1999). Anopheles sacharovi is the main vector in malarious areas of Turkey, which is relatively close to other mediterranean countries of southern Europe. The main reasons for malaria recrudescence in this country are (i) the great expansion of the irrigation network, that resulted in a dramatic increase in A. sacharovi density and (ii) the resistance in the vector populations to organochlorine and several other organophosphorous compounds used in residual spraying activities (Kasap et al. 2000; Sabatinelli et al. 2000).

In order to study the population structure of this malaria vector, we developed and characterized microsatellite loci

Correspondence: M. Weill. Fax: (33) 4 67 17 36 22; E-mail: weill@isem.univ-montp2.fr

for this species. Microsatellite loci were isolated as described by Estoup et al. (1993) using the detailed protocols of Estoup and Martin available at http://www.inapg.inra.fr/dsa/ microsat/microsat.htm. Genomic DNA was extracted from a pool of 20 A. sacharovi specimens and totally digested by Sau3A. Size-selected fragments (400-900 bp) were ligated into a pUC18 vector (Pharmacia) digested by BamHI and plasmids were used to transform XL1-blue competent cells (Stratagene). Approximately 3000 recombinant clones were transfered onto Hybond-N+ nylon membranes (Amersham) and screened with an equal mixture of (TC)₁₀ and (TG)₁₀ digoxigenin-end-labelled oligonucleotide probes (Boehringer Mannheim). Plasmid DNA from 45 positive clones was purified using the QIAprep Spin Miniprep Kit[™] (Qiagen) and sequences of inserts were obtained with an ABI 310 sequencer (Perkin-Elmer). Polymerase chain reaction (PCR) primers were designed flanking 18 microsatellite sequences using the computer program OLIGO[™] (version 4.0; National Biosciences). Primer pairs were chosen to amplify short (90-260 bp) PCR products.

Microsatellite variability was analysed using 41 individuals from the locality of Adana in Turkey. DNA was isolated from single specimens following Collins *et al.* (1987). Either the shorter of the two primers or, if primer lengths were equal, the forward primer had a 19-base extension at its 5' end with the sequence 5'-CACGACGTTGTAAAACGAC-3' (Roy *et al.* 1996). This sequence is identical to an Infra-Red (IR)-labelled (LI-COR dye, IRD-700 or IRD-800) universal M13 forward primer (Steffens *et al.* 1993). The PCR amplifications were carried out in a 20- μ L reaction volume from approximately 5–10 ng of template DNA. The reaction mixture contained 1× Qiagen PCR buffer, 200 μ M of each dNTP, 20 pmol of the primer with M13 tail, 10 pmol of the nontailed primer, 20 pmol of IR-labelled M13 forward primer, 1 U Eurogentec Taq Polymerase and 2.5 mM of MgCl₂ for all loci except for SachA3 and SachA16 where 2.8 mM of MgCl₂ was used. Amplifications were performed using a Mastercycler gradient Eppendorf thermocycler using a touchdown procedure: an initial denaturation at 94 °C for 2 min followed by 10 cycles of 30 s at annealing temperature decreasing by 1 °C per cycle from 57 to 47 °C, followed by 20 cycles of 30 s at 94 °C, 30 s at 50 °C and 30 s at 72 °C and a final elongation step of 2 min at 72 °C.

Amplified fragments were separated on 6.5% polyacrylamide denaturing gels using a LI-COR (IR2 LI4200S2G). The PCR product size was determined by comparison with the clone size (amplification of the clone loaded every six lanes on each gel). If necessary, two or more runs were performed to verify the allele typing, by re-ordering the samples.

Of the 18 pairs of primers, three failed to amplify. The other 15 loci yielded repeatable and scorable results. All markers were polymorphic showing three to 17 alleles. In order to assess the usefulness of these loci for population genetic analysis, heterozygote deficiency (an indication of the presence of null alleles at high frequency) was studied using GENEPOP version 3.3 (Raymond & Rousset 1995). Taking into account multiple testing (Hochberg 1988), eight loci displayed a significant (P < 0.05) departure from Hardy–Weinberg equilibrium, due to excess of homozygotes (Table 1A), and eight loci displayed no significant

Tab	ole 1	Characteristics	of 15	microsatel	llite	loci of	Anop	heles sac	harovi
-----	-------	-----------------	-------	------------	-------	---------	------	-----------	--------

Size of the Adana (Turkey) Repeated motif in cloned cloned allele (bp) Accession no. allele (bp) ASR No. alleles 1-Qinter Fis Primer sequences (5'-3') Locus n Α SachA16 F: GGGATGGGTTGAATG AJ539386 97 189-211 41 11 0.78 0.34 (GT)₁₁G₂T₄A(TG)₃ R: GCATAAGTTTCGCCTC SachCU AJ539387 185 175-227 40 17 0.92 (CA)₁₈ F: TACCTAAATCGCATCGT 0.46 R: TCCTGAAATCCTGTTGA SachQ7 101 101–111 41 0.64 $(CA)_{9}$ F: GCGCACCGAGTAAAG AJ539388 6 0.62 R: CATCCCCAGCAAAAG 0.90 SachK161 (AC)12 AJ539389 253 241-285 40 16 0.31 F: CACAAATCTCCGAACC R: TATTGCTTTCTTGTCTATCC SachC55 $(CA)_8$ F: CGCCATTAGACACCCAI539390 170 168-182 38 13 0.88 0.19 R: CTGACGAAGACAACTCCT SachOB 205-235 38 15 0.92 $(CT)_3(GT)_{14}N_7(TG)_3N_{11}(TG)_7$ F: GATACGCACAACTCCCT AJ539391 223 0.23 R: CAACGCTATTTGCCC 0.70 SachK89 (GT)2AT(GT)7 F: GCACTAACACCGACA AJ539392 112 110-120 41 5 0.23 R: CACATCGCCTCCAAC в 7 SachO27 (AC)3GA(AC)10 F: CAAAGTGAGGCAGGG AJ539393 262 254-266 38 0.68 0.15 R: AGTGTGCGTTGGCTT SachQ82 $(AT)_2(AC)_2AT(AC)_3$ F: GTAGTTACGAGGGCGA AJ539394 248 224-264 37 9 0.70 0.19 AT(AC)6AT(AC)4T5(AT)3 R: CAGTTTCAGGATTCAGTTT SachA3 AJ539395 127 121-129 41 3 0.30 -0.15 $(GT)_8TT(GT)_2$ F: GCCGTAGAAAATCGTG R: GTCCTTCCCAGTCCTT SachG49 (AC)₂(CA)₃TA(CA)₈TA(CA)₃ AJ539396 29 8 F: GTGCGAAAACTCAACC263 249-277 0.63 0.13 R: ATGATGCTGCCTGAAC SachG97 (CA)₁₂ F: GATGCTGATGAAGATGG AJ539397 119 111-129 40 9 0.77 0.03 R: GACGGATGGAAAAGTG 5 SachG103 (CA)₃CGCAAA(CA)₆CG(CA)₅ F: CACGGGATATGTTAAGAA AJ539398 169 159-175 40 0.520.19 R: CTTCCTAGTGAGTGGAGC SachMB (GA)₂₀ F: GTGTTACTTCAACCTGTCC AJ539399 161 137-165 40 14 0.86 0.15 R: TGCGTTAGTTTACCTCCT SachM1 $(CT)_5 CG (CT)_4 TT (CT)_3$ F: GCTATGTCCCATCGTAA AJ539400 124 123-128 41 5 0.58 -0.006R: CCAAATACAGCCATCC

ASR, Allele size range (bp); *n*, sample size; 1-Qinter, diversity among individuals within samples (Raymond & Rousset 1995); Fis, estimates following Weir & Cockerham (1984); bold characters denote a significant (P < 0.05) heterozygote deficiency, taking multiple tests (sequential Bonferroni method) into account. Loci are presented according to whether they display (A) or not (B) a significant heterozygote deficiency.

(P > 0.05) heterozygote deficiency (Table 1B). No case of significant linkage disequilibrium was detected among all pairs of loci in Table 1B (Fisher's exact test, P > 0.05, taking into account multiple testing), suggesting that these loci are statistically independent. Fis estimates following Weir & Cockerham (1984) and diversity among individuals within samples (1-Qinter) were determined using GENEPOP (Raymond & Rousset 1995). In total, eight polymorphic loci without significant heterozygote deficiency are thus available for population genetics studies of *A. sacharovi* in the Middle East and NIS.

Acknowledgements

The study was supported by the COPERNICUS-2 RTD project contract ICA2-CT-2000-100046 of the European Commission; we are grateful to Luigi Gradoni who provided the mosquito samples employed in this study, Marco Di Luca for mosquito species identification and Arnaud Estoup and Claire Billot for help in microsatellite cloning. Publication ISEM 2003.009.

References

Collins FH, Mendez AM, Rasmussen MO *et al.* (1987) A ribosomal RNA gene probe differentiates member species of the *Anopheles gambiae* complex. *American Journal of Tropical Medicine and Hygiene*, **37**, 37–41.

Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterisa-

tion of $(GT)_n$ and $(CT)_n$ microsatellites in two insect species: *Apis mellifera* and *Bombus terrestris*. *Nucleic Acids Research*, **21**, 1427–1431.

- Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. *Biometrika*, **75**, 800–802.
- Kasap H, Kasap M, Alptekin D, Lüleyap U, Herath PRJ (2000) Insecticide resistance in *Anopheles sacharovi* Favre in southern Turkey. *Bulletin of the World Health Organization*, **78**, 687–692.
- Majori G, Sabatinelli G, Kondrachine AV (1999) Re-emerging malaria in the WHO European Region: control priorities and constraints. *Parassitologia*, **41**, 327–328.
- Raymond M, Rousset F (1995) GENEPOP (Version 1.2): a population genetics software for exact tests and ecumenicism. *Journal of Heredity*, **86**, 248–249.
- Romi R, Boccolini D, Di Luca M, La Rosa G, Marinucci M (2000) Identification of the sibling species of the Anopheles maculipennis complex by heteroduplex analysis. *Insect Molecular Biology*, 9, 509–513.
- Roy R, Steffens DL, Gartside B *et al.* (1996) Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer. *Journal of Forensic Sciences*, **41**, 418–424.
- Sabatinelli G, Gokcinar T, Serttas S, Ejov M (2000) The malaria epidemiological situation in Turkey. *Parassitologia*, **42** (Suppl. 1), 150.
- Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated sequencing of M13. *Biotechniques*, 15, 580–582.
- Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. *Evolution*, **38**, 1358–1370.