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Population differentiation is usually evaluated in comput-
ing various statistics from allelic frequencies in each sample,
and applying a statistical test to tentatively reject the null
hypothesis Ho (Ho: no differentiation among populations).
The parameter F;, defined by Wright (e.g. 1969), is most
often used. It varies from 0 (absence of differentiation) to 1
(complete differentiation). Three statistics are commonly
used to test whether populations are significantly differen-
tiated. First, for one locus, a x? statistics is computed on the
allelic contingency table under the null hypothesis (Workman
and Niswander 1970). Second, for each locus, an exact x2 or
various other statistics are computed by permutation proce-
dures (Hudson et al. 1992; Roff and Bentzen 1989). Third,
for several loci, a 95% confidence interval of an F estimate
is established with a bootstrap procedure over F, estimates
for each locus (Weir 1990a). The unbiased estimate of F,, @
{Weir and Cockerham 1984) is required in this case. This last
way of testing population differentiation will be referred
hereafter as W90,

An alternative way of testing population differentiation is
presented here, based on an exact nonparametric procedure.

THE PrOBABILITY TEST FOR
POPULATION DIFFERENTIATION

An exact probability test can be constructed by using the
classical Fisher test for R X C contingency tables. Each row
represents a population and each column an allele (table 1).
N;; is the number of copies of allele j in population i. The
null hypothesis Ho, independent between row and column
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variables, corresponds to an absence of population differ-
entiation. Given Ho, the probability II of the observed table
is:

k
fg - TT V0
== =

o [TTT v

=1 j=

where N; refers to sample size of population i, Ny refers to
the total number of allele j, and N.. to the sum of all cells.

The exact value (or P) of type-one error probability for
rejecting Ho is computed by summing the probabilities of all
tables that have the same or smaller probabilities and with
the same row and column sums (e.g., Fisher 1935; Yates
1984). This exact test is impossible to perform for most data
sets, because the total number of cases to consider increases
rapidly (Gail and Mantel 1977). Even the most elaborate
available software offering an exact Fisher test on R X C
contingency table, based on the sophisticated network al-

TasLe 1. Contingency table for test of population differentiation.
N;; represents the number of allele j in population i

Alleles
Populations i i k Total
1 Ny Ny; Ny Ny
i Ng; e N‘J haad N,’k Ng.
P Npl [ias Nﬂ! s Npk Np,
Total N, N; N, N.
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TaBLE 2. Illustration of the Markov chain algorithm for a small imaginary data set. Only the three first elements of the chain are
represented, generated when the random number generator of Marsaglia et al. (1990) was initiated with the seeds 4, 3, 2 and 1. The two
selected cells of step 2 of the algorithm (see text) are in bold characters, and the two putative recipient cells are underlined. The value
of p, R, and INF are indicated below each table. A bold arrow between two consecutive elements of the chain indicates that a new state
has been reached. With ¥ = 100,000, the P-value of the observed table is 0.155 (SE = 0.005).

Observed data

Allele Chain element no.
Pop. 1 2 3 1 2 3
1 10 6 3 10 6 3 10 6 3 10 6 3
2 4 7 4 - 435 7 3 - 45 7 3 - 45 6 4 - etc,
3 5 1 0 4 1 1 4 1 1 4 2 0
Variables
p 0 -0.81 -0.81 -0.95
R 0.44 0.30 0.88 1.1
INF — 1 2 3

gorithm of Mehta and Patel (1983), cannot handle data sets
typical of most population studies.

Instead of computing this exact probability, an unbiased
estimate can be obtained using a Markov chain method. The
principle is to explore the space of all possible contingency
tables with the same marginals and to determine for all such
tables if its probability of occurrence is higher or not than
IT The proportion of tables with a lower or equal probability
than II is an unbiased estimate of P. More precisely the
algorithm is the following (see table 2 for an illustration):

(1) Set variables p = 0 and INF = (.

(2) Select at random two cells of the table on different
rows and columns (cells i141 and i2,52).

(3) If at least one of these cells is empty (Ny;; = 0 or
Npjp = 0), go to step 5.

(4) The chain can potentially move to the new state (from
nto n + 1) represented by the table where:

Niyji = Ny — 1
Nizjp = Nigjp — 1
Niuja = N + 1
Nipji = Nppjp + 1

The ratio (or R = Ny j1"Niz jo/(Nip 1 + 1)*(Nyy jp + 1), which
corresponds to I, /11, ) of the probability of the two tables
is computed. If this ratio is equal to 1 or larger, the chain
moves to the new state. If it is below one, the chain moves
to the new state with probability R.

If a new state is reached, compute: p = p + Ln(R).

(5) if p (which corresponds to Ln(Il,, /IT)) is equal to or
less than O then INF = INF + 1. INF memorizes the number
of times the chain has encountered tables with a lower or
equal probability than the observed one.

(6) Repeat Y times from step 2. The value of Y is deter-
mined by the user. A typical value could be 50,000.

(7) The unbiased approximation of P is INF/Y. The stan-
dard error of the estimate is calculated as described in Has-
tings (1970).

A dememorization process should be first performed to
take into account that the chain is always starting from the
observed sample (Guo and Thompson 1992). This is done
by running first the algorithm without step 5 with, for ex-
ample, Y = 1000.

The general principle of Markov chain methods to esti-

mate a parameter is based on the algorithm of Metropolis
et al. (1953). Its application to estimate the exact probability
for rejecting the independence of a contingency table has
been established by Guo and Thompson (1989, Technical
report no. 187, Department of Statistics, University of
Washington, Seattle), with a slightly different (and slower)
algorithm.

We have built a computer program in Quick Basic to per-
form the unbiased estimation of the Fisher exact test on con-
tingency tables, based on the above algorithm, and named
STRUC. Pseudorandom numbers were generated according
to Marsaglia et al. (1990). STRUC has been thoroughly tested
for very simple cases by hand calculations and by comparison
with exact probabilities computed for several contingency
tables (e.g., Mehta and Patel 1983). This program has been
used to compare some available methods to detect population
differentiation.

COMPARISON WiTH PERMUTATION METHODS

Like permutation methods (Hudson et al. 1992; Roff and
Benzen 1989), the Markov chain is a way to generate an
exact probability distribution under the null hypothesis,
which is not biased by rare alleles of low sample size. Both
can be used theoretically to compute a probability test, an
exact x2 or any other relevant distribution statistics, and have
the same advantage compared with asymptotic statistics such
as the x? of Workman and Niswander (1970).

The relative advantage of the various possible exact sta-

. tistics seems to depend on which aiternative hypothesis is

used (e.g., Hudson et al. 1992), such that no general rec-
ommendation could be made, although Hudson et al. (1992)
and Roff and Bentzen (1992) recommended the x2. However,
they did not include the probability test in their power com-
parisons for various alternative hypotheses. Some compari-
sons with the exact x? have been performed (table 3), by
analyzing data already used by Hudson et al. (1992) and other
accessible data sets (Dias et al. 1995). As suggested by Roff
and Bentzen (1992), no lumping of cells of the contingency
tables was done. The probability test provided equal or lower
values in all examples, but this does not indicate necessarily
its superiority. This aspect deserves further work, but is out
of the scope of this paper.
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Tasre 3. Comparison of the probability test, the exact x2, and the asymptotic x2. Two data sets from the literature were used. N is the
total size of the contingency table, k is the number of alleles. P values * SE are given.

P-values
Data set N k Probability test Exact x2 Asymptotic 2

Dias et al. 1995

locus MS1 186 21 <5 10-¢ 0.0069 = 0.0020 0.0018 (df = 140)

locus MS$3 180 22 0.035 = 0.0057 0.13 = 0.012 0.11 (df = 147)
Krietman and Aguadé 1986 _

Adn® 53 15 0.45 = 0.011 0.47* = 0.01 0.44 (df = 14)

AdhF 34 24 0.55 = 0.006 0.55* = 0.006 0.46 (df = 23)

All 87 39 0.27 = 0.011 0.33* *+ 0.01 0.35 (df = 38)

* These values are different from those of table 5 of Hudson et al. (1992) because they pooled some cells of the contingency table.

For very small data sets, permutation procedure are faster
than the Markov chain method for a same precision of the
estimate. However, as the data set increases to a size com-
monly encountered in population studies, the Markov chain
method outcompetes permutation procedures (see Guo and
Thompson 1992). This is because the time required to per-
mute each element is proportional to the total size of the
contingency table, whereas for the Markov chain method,
computation time does not increase much with the number
of subpopulations, the number of alleles, or the total size of
all samples (results not shown).

TESTING THE W90 METHOD

The W90 method was tested by analyzing the complete
data file published by Weir (1990a) to illustrate the bootstrap
method for the diploid case. To compare the multilocus boot-
strap method with the exact test on each locus, a global test
for all loci was obtained by Fisher’s combined probability
test (Fisher 1970 in Manly 1985). Opposite conclusions were
reached. The bootstrap result, which indicates a significant
structure is supported neither by exact results for each locus
nor by their combination (table 4).

It is easy to demonstrate that the use of bootstrap to build
a confidence interval is incorrect in this case, because only
a few loci are available. Let us consider two loci (for sim-
plicity) in a nonstructured population. The true value of Fg
is 0, and each of the unbiased 8, and 8, estimates will be
positive or negative, in both cases with probability 1/2 (Weir
1990a). There are two situations:

1) 6; and 8, are both positive or both negative (with prob-

TasLe 4. Comparison of W90 and the probability test. Data on 8
are those published by Weir (1990) to illustrate his method on the
diploid case. Multiloci test refers to the bootstrap of W90 or the
combination of independent tests (Fisher’s method). All exact tests
were done with a Markow chain of 50,000 steps, and 1000 steps
of dememorization (see text for explanations).

Probability test

9 Probability SE
Locus 2 0.0213 0.23 0.00662
Locus 3 0.0136 0.21 0.014
Locus 4 0.0160 0.12 0.012
Overall statistics 0.0158 Not applicable
Multiloci test P < 0.05 P>01

ability 1/2). Resampling of loci with replacement (bootstrap)

-will produce a 8 distribution, which never includes the true

value, and no confidence interval will include it.

2) 8; and 6, have opposite signs (with probability 1/2).
Resampling of loci with replacement will produce a g dis-
tribution from which all confidence intervals (constructed as
in Weir 1990a) representing more than 50% of the values
will include the true value (zero).

The overall expected percentage of intervals generated at
any significance level from 50% to 100% is therefore 50%
under the null hypothesis. The bootstrap method produces
an inaccurate nonparametric confidence interval in this case,
as it does more generally (Schenker 1985; Efron 1987) be-
cause it converges to the correct confidence interval only
when the number of independent estimates of F; (i.e. loci)
increases. Thus, as stated by Weir (1990a, p. 390), it is
necessary to sample several loci. However, his own example
shows that a dubious conclusion can be reached with five
loci. In this example, two loci were uninformative, and the
three others yielded positive estimates (see table 3). In such
a case, it is not possible to find a confidence interval in-
cluding the value 0 by bootstrapping over loci. However,
under the null hypothesis, this will occur with probability
(1/2)* with n informative locus.

CONCLUSION

Exact tests (either exact x? or probability test) for popu-
lations differentiation has several advantages over previous
methods. First, they are accurate and unbiased, even for very
small samples or low-frequency alleles. Second, they provide
test results for each locus (in contrast to W90), which allows
for the possibility of detecting aberrant loci (e.g., selected
loci). Multi-loci statistics can be obtained by Fisher’s com-
bined probability test. Third, they are independent of the
ploidy level, although random mating is required for diploids
or higher ploidy levels.

The Markov chain method is faster than permutation pro-
cedures for realistic data sets, and computation time remains
within reasonable limits even for very big data set (e.g., N
> 1000). Most tests using a Markov chain will give accept-
able results (SE = 0.01) in less than 30 s when run on a PC
with Intel 486 processor (25 MHuz) computer. The STRUC
program is available by anonymous ftp (at FTPRCNRS-
MOPFR in the MSDOS directory) or upon E-mail request,



BRIEF COMMUNICATIONS

and is also included in the GENEPOP population genetics
software package (Raymond and Rousset 1995).

The bootstrap method of W90 is only asymptotically cor-
rect and its validity has apparently not been previously de-
termined by comparison with an exact test or by simulation.
Exact test methods do not replace the need to compute Fg,
as this parameter is used for other purposes (e.g., estimation
of the number of migrants). The probability test can be used
for a wide variety of biological data, as it represents an
unbiased estimation of the Fisher exact test on contingency
table. For example, the gametic or genotypic linkage dis-
equilibrium (Weir 1990b) can be analyzed with this method.
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