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ABSTRACT 
Currently used  tests of Hardy-Weinberg proportions do not take into account the nature of the 

alternative hypothesis, which  is generally a heterozygote  deficiency.  Different  exact  tests, appropriate 
for small sample size and large number of alleles, are proposed in this  perspective, and their properties 
are evaluated by power  comparisons.  Some tests are found to  be  close to optimal for the detection of 
inbreeding or heterozygote excess, one of  which  is a score  test closely related to  Robertson and Hill's 
estimator of the inbreeding coefficient.  This  test is  also  easily applied to multiple  samples.  Such  tests 
are not always the most appropriate if alternative  hypotheses  differ  from  those considered here. 

A deviation from Hardy-Weinberg proportions indi- 
cates either selection, population mixing or non- 

random mating, and its detection is one of the first 
steps in the study of population  structure. For example, 
population  structure as well as selfing can result in het- 
erozygote deficiency. Such deviations are usually tested 
for  one locus by computing a chi-square statistic that 
follows  asymptotically a chi-square distribution with k ( k 
- 1)/2 df under the  null hypothesis, where k is the 
observed number of alleles ( LI and HORVITZ 1953). 
Also used is an exact test inspired from FISHER'S exact 
test for contingency tables, which was first applied by 
HALDANE ( 1954) , and a large number of  less  successful 
proposals (see LESSIOS 1992 for  further  references). 
Exact  tests are  appropriate even when many rare alleles 
are  present ( GUO and THOMPSON 1992; CHAKRABORTY 
and ZHONG 1994)  and should  therefore  be used for 
population genetic analyses of hypervariable markers 
such as microsatellite loci (e.g., DI RIENZO et al. 1994; 
ESTOUP et al. 1994; MORIN et al. 1994) . 

It has sometimes been pointed out  that  the chi-square 
statistic is not very appropriate when the alternative hy- 
pothesis of the test is heterozygote  deficiency (PAMILO 
and VARVI(IAHO 1984;  LESSIOS 1992),  and the same may 
be true of the exact test as generally  used. Although 
heterozygote deficiency is the alternative most often con- 
sidered in practice, such tests do  not take  this fact into 
account. For this reason, we discuss exact tests  based on 
different statistics and compare them to previous ones. 

DEFINITION OF TESTS 

Definition of alternative  hypotheses: Consider a p o p  
ulation in which there  are k alleles at frequencies p = 
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( p  * - * p k )  . Any deviation from Hardy-Weinberg pro- 
portions can be summarized by the set f of parameters 
f j  ( fj = Ai) such that  the probability of some sample S 
of N individuals, composed of ng genotypes Ai Aj( i I 
j )  , is as  follows (model 1 ) : 

In some situations (e.g., regular inbreeding) all f,, are 
identical to some value f SO that this probability is as 
follows (model 2 )  : 

Exact tests: The null hypothesis is f = 0. This is a 
composite hypothesis,  because it does not specify unique 
values for p (STUART and ORD 1991 ) . For  this reason it is 
necessary to consider a probability distribution deduced 
from the above one  and  independent of p when f = 0. 
Considering the set e of  all  possible  samples sj that, for 
all  allelic types i, have number of genes ni identical to 
those of a particular sample S, LEVENE ( 1949) has shown 
that the conditional probability 

is independent of p, and its value is 
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The probability test defines a ranking of possible  sam- 
ples from lower to higher Pr (S) , and the P value of 
the sample is the sum of probabilities of samples with 
lower rank, Le., sPr(S)  Pr (s,) . This is the exact test 
of most authors  (LOUIS and DEMPSTER  1987;  HEWAN- 
DEz and WEIR 1989; WEIR  1990; Guo  and THOMPSON 
1992; CHAKRABORTY and ZHONG 1994). 

Exact  tests generally share several features that  need 
to be distinguished: (1) no use  of  asymptotic distribu- 
tions (exactness) , ( 2 )  a probability distribution inde- 
pendent of unknown parameters under the null hy- 
pothesis, an  important  requirement  that  together with 
( 1 ) leads to the use  of particular conditional distribu- 
tions like LEVENE’S one that is independent of unknown 
frequencies p,  and ( 3) use  of the probability of a partic- 
ular configuration as a test statistic. 

The conditional distribution of  any  statistic under  the 
null hypothesis can be computed using LEVENE’S  distri- 
bution. Thus, different test  statistics define different 
rankings of possible  samples, but  the  Pvalue is similarly 
defined as a sum of exact probabilities of  samples  with 
more extreme ranks, so all  tests are exact tests. The 
choice of the probability as a test  statistic  traces  back to 
FISHER’S exact test for contingency tables.  FISHER  re- 
jected any theory for the choice of test  statistics (LEK 
MANN 1993). Under the NFCYMAN-PEARSON theory these 
are chosen on the basis  of the probability of rejection 
of the null hypothesis (power) when some specified  al- 
ternative  hypothesis is true. In the following, the exact 
power of some classical  tests (e.g. ,  EMIGH 1980; HERNAN- 
DEZ and WEIR 1989) will be compared to that of  tests 
more specifically adapted to the detection of inbreeding. 

Definition of test  statistics: In addition to  the proba- 
bility (Pr) test, we considered  the following  tests: 

X’ (exact) test: Its statistic is the well-known chi  square, 
a.e., 

( LI and HORVITZ 1953), where p = (jl * - p k )  are  the 
observed allele frequencies in the sample. 

G (exact) test: Its statistic is a log likelihood ratio statis- 
tic directly derived from the  general model (eq. 1 ) of 
deviation from Hardy-Weinberg proportions, so that 

where the p q  are  the observed genotype frequencies 
( e.g., HERNANDEZ and WEIR 1989). 

fc OT NHel  test:fc  is the estimator of f defined by COCK- 
ERHAM (e.g., COCKERHAM 1973;  WEIR and COCKERHAM 
1984). It  can  be used as a test statistic and has a simple 
relation with the  number of heterozygotes NHet (easily 
derived from COCKERHAM 1973) : 

Within the  set C of samples with identical ni , fc is func- 
tion of NHec only, decreasing for increasing NHel. There- 
fore identical tests are  defined from fc and NHel and it 
is simpler  to use the NHel test. The P value is 
CNHet(sz)sNHe,(s) Pr (s,)  if the alternative hypothesis is het- 
erozygote  deficiency and XNHet(Sr)  2NHpl(s) Pr ( si) for het- 
erozygote  excess. Thus two one-tailed tests can be de- 
fined by these two definitions of Pvalue. 

fund% tests: The second model ( eq. 2) suggests other 
statistics, such as the maximum likelihood estimate f of 
f that, jointly with maximum likelihood estimates p of 
allele frequencies, maximizes & ( S ,  f ,  p )  . When there 
are  more  than two alleles, numerical methods  are nec- 
essary to find this maximum and  the estimates j .  and p ,  
so that  another  estimate& of fthat maximizes the likeli- 
hood & if the vector of observed frequencies p is taken 
as estimate of p has been suggested as a suitable alterna- 
tive ( LI and  HORWTZ 1953;  CURIE-COHEN 1982) . f A  is 
the  unique  root of 

within [ -1, 13 ( f A  = 1 if N H ~ ~  = 0 , f ~  = -1 if NHet = N; 
see APPENDIX ) . Two one-tailed tests can be  defined as 
above. 

Score ( U )  test: It is constructed from the score 

( e.g., Cox and HINKLEY 1974; STUART and ORD 1991 ) . 
Here again the allelic frequencies p are unknown and 
we use their maximum likelihood estimates under the 
null hypothesis f = 0, which are  the observed frequen- 
cies p :  

which is the left side of eq. 8 evaluated at f = 0. 
U is equivalent for testing purposes to  the estimator 

fT of  ROBERTSON and HILL (1984,  eq. 13) because 
within C, Jr is a (monotone) function of U only: 

fT = 
( 2 N -  1)(1  + U / N )  - ( 2 N -  k) 

2 ( N -  1) ( k  - 1) * (10) 

Applications of the NEXMAN-PEARSON lemma: The 
NEYMAN-PEARSON lemma (e.g., STUART and O m  1991; 
LEHMANN 1994) states that  the most  powerful  possible 
test  of a null hypothesis us. an alternative hypothesis 
would be defined by ordering samples according to the 
ranks of the ratio X of likelihoods under the null hypoth- 
esis and  under an alternative  hypothesis, such as X ( S )  
= L ( S ,  0, p )  /L ( S ,  f ,  p) . h must not be confused with 
a likelihood ratio statistic as it depends on unknown 
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TABLE 1 

Power comparisons (model 2) 
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Parameters 
Upper 

Power  of  tests 

f N P bound h U N H ~ ~  Pr P G 

2 alleles: 
-1/6 

1/8 
1/4 
1/2 

3 alleles: 
-1/8 
- 1/8 

1/10 
1/10 
1/10 
1 /8 
1/8 
1 /8 
114 
1/4 
114 
1/4 
1 /4 
114 
1/2 
1/2 

>3 alleles: 
-1/10 

1 /8 

1 /4 
1/4 

100 
50 
50 
20 

50 
50 

100 
100 
100 
50 
50 
50 
20 
20 
20 
50 
50 
50 
20 
20 

50 
50 
50 
20 

(0.25  0.75) 
(0.45  0.55) 
(0.45  0.55) 
(0.25  0.75) 

~ 3 . 1  = (0.5  0.3  0.2) 
r3,2 = (0.36  0.33  0.3) 
r3 .1  

7r3,3 = (0.7  0.2  0.1) 
r3.1 

r 3 , 2  

R3.3  

r3 .1  

r 3 . 2  

r s . 3  

T 3 , I  

r 3 . 2  

r 3 , 3  

r 3 . 3  

T 5 , I  

r 5 , 2  

r5,2 
?r8 

r 3 . 2  

n 3 . 1  

0.4363 
0.1562 
0.4505 
0.4700 

0.3541 
0.3410 
0.392 
0.422 
0.3676 
0.3390 
0.3437 
0.2997 
0.4218 
0.4226 
0.3405 
0.7536 
0.7736 
0.6844 
0.8871 
0.7636 

0.431 
0.499 
0.922 
0.801 

0.4363 
0.1562 
0.4505 
0.4700 

0.3356 
0.3322 
0.392 
0.427 
0.3666 
0.3352 
0.3395 
0.2948 
0.4165 
0.4160 
0.3380 
0.7515 
0.7688 
0.6806 
0.8832 
0.7589 

0.381 
0.504 
0.918 
0.770 

0.4363 
0.1562 
0.4505 
0.4700 

0.3498 
0.3350 
0.396 
0.427 
0.3624 
0.3322 
0.3388 
0.2908 
0.4053 
0.4100 
0.3260 
0.7445 
0.7646 
0.6561 
0.8641 
0.7352 

0.428 
0.480 
0.908 
0.723 

0.4363 
0.1562 
0.4505 
0.4700 

0.2722 
0.2821 
0.334 
0.389 
0.3033 
0.2875 
0.301 1 
0.2425 
0.3623 
0.3702 
0.2831 
0.7075 
0.7388 
0.6117 
0.8569 
0.7203 

0.349 
0.430 
0.886 
0.705 

0.3046 
0.1116 
0.3730 
0.4541 

0.1106 
0.1405 
0.204 
0.193 
0.2388 
0.1790 
0.1578 
0.2176 
0.2773 
0.2493 
0.2761 
0.5411 
0.5184 
0.5538 
0.7647 
0.6938 

0.052 
0.215 
0.669 
0.524 

0.3403 
0.1074 
0.3637 
0.4475 

0.1247 
0.1523 
0.199 
0.181 
0.2323 
0.1650 
0.1451 
0.1995 
0.2373 
0.2135 
0.2480 
0.5172 
0.4970 
0.5183 
0.7194 
0.6660 

0.067 
0.192 
0.629 
0.358 

0.3582 
0.1056 
0.3573 
0.4082 

0.1748 
0.1785 
0.154 
0.165 
0.1589 
0.1235 
0.1167 
0.1388 
0.1867 
0.1593 
0.2165 
0.4273 
0.4386 
0.4175 
0.6389 
0.6206 

0.111 
0.132 
0.491 
0.316 

Each  comparison is based on 1000 or 10,000 independents samples (three or four decimal  points,  respectively)  containing 
more  than  one  allelic  type.  The upper  bound is computed as described  in  text (NEYMAN-PEARSON lemma).  The estimates of 
power are binomially  distributed,  therefore  their SEs are  at most 0.005 for 10,000 samples  and 0.016 for 1000 samples.  For each 
of the  >three-alleles  cases,  the  average SE  of the  estimate of P value for f; computed as in GUO and THOMPSON (1992), was 
below 0.005. Lower Pvalues have  lower  SEs. ~ 5 . 1  = (0.22  0.21  0.20  0.19  0.18), r5,* = (0.30  0.25  0.20  0.15 O . l O ) ,  and ?r8 = (0.16 
0.15  0.14  0.13  0.12  0.11  0.10  0.09). 

parameters, f and p in this example. In  the two-allele 
case, it can be checked that  the ranking of A is indepen- 
dent of p within e and  depends only on  the sign  of f 
and  the value  of n12, so that any monotone function of 
this  value will define a uniformly most  powerful  test  of 
f = 0 us. one-sided alternatives f > 0 or f < 0. But 
generally the  ranking of A depends  on allele frequencies 
so that no real test can be defined from the lemma. In 
power comparisons where samples are  generated from 
a completely specified alternative hypothesis, these pa- 
rameters are known so A can be computed and used to 
construct a test that is more powerful than any possible 
test (this is not strictly true when different possible  sam- 
ples have the same A, see TOCHER 1950).  The power of 
real tests can then be compared to this upper  bound. 

POWER COMPARISONS 

The power of different statistics to  detect several 
kinds of deviations from Hardy-Weinberg proportions 
have been  computed  for  different  numbers of alleles. 

Heterozygote deficiency can be generated by regular 
systems  of inbreeding (eq. 2 )  or by population struc- 
ture, in which  case the  general  model (eq. 1 ) is appro- 
priate. Heterozygote excess can also be the alternative 
hypothesis of interest,  for  example if symmetric over- 
dominance is expected, or if allelic frequencies  are ex- 
pected  to differ in fathers and mothers. 

For each set of parameters (p ,  f ) , samples were 
generated  according to multinomial models (eq. 1 or 
2 ) .  The algorithm 310.4  of  PRESS et al. (1988) was used 
to estimate 1, and fa was estimated by Newton-Raphson 
method.  Performing exact tests requires algorithms that 
generate Levene’s probability distribution for multiple 
alleles and large sample sizes. Exact Pvalues were  com- 
puted  in  the two- and three-allele cases using the com- 
plete  enumeration algorithm of  LOUIS and DEMPSTER 
( 1987) or estimated by a Markov chain algorithm ( GUO 
and THOMPSON 1992)  after 100 000 iterations  for  more 
than  three alleles. The  computer  programs have been 
checked by comparison with published results (LOUIS 
and DEMPSTER 1987; Guo  and THOMPSON 1992)  for 
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TABLE 2 

Power comparisons off us. 

Parameters  Power of 

f N  P f f A  

-1/8 50 (0.5 0.3 0.2) 0.332 0.324 
-1/10 50 (0.22 0.21 0.20 0.19 0.18) 0.412 0.404 

1/4 20  (0.3'6 0.33 0.3) 0.422 0.419 
1/4 50 (0.5 0.3 0.2) 0,723 0.722 

Power is evaluated  on 1000 samples  containing  more  than 
one  allelic  type.  See  Table 1 for SEs. In the  five-alleles  case, 
Pvalues  are  estimated  after 10,000 iterations of the  Markov 
chain  algorithm.  In  this  case,  the  average SE of the festimate 
was 0.013. 

these algorithms and by independent calculations for 
maximum likelihood estimation. A computer program 
that performs the exact Utest on  one or several samples 
is available in  the  present version  of the  Genepop soft- 
ware ( RAYMOND and ROUSSET 1995). 

Power was estimated as the frequency of tests for 
which the P value is below 0.05, an  arbitrary  choice 
that  does not bias the comparison of tests (results 
not  shown). Because of the relatively heavy computa- 
tional requirements of the  joint estimation off  and 
p ,  the test based on f was considered only in a few 
comparisons. 

Results are  presented in Tables 1-3 for  the two mod- 
els and two to  eight alleles (three  in most cases) . The 
present power comparisons agree with earlier results by 
EMIGH ( 1980)  and HERNANDEZ and WEIR ( 1989) who 
showed for two- and three-allele cases that  the exact Pr 
and x' tests are slightly better  than  the exact G test to 
detect heterozygote deficiency, whereas the reverse is 
true for heterozygote excess.  With two alleles,  tests 
based on],, Uand NHetare identical and most  powerful, 
as found by application of the Newman-Pearson lemma 
since these statistics are  monotone functions of the 
number of heterozygotes. With  several  alleles, the 
power  of  all  tests increases with the  number of alleles, 
but this increase is more  pronounced for the tests based 
on j k ,  U and NHel, as seen  for (f, N )  = ( 50) or 
( 50) in Table 1. Among them,  the best tests are 
always those based on ], and U for model 2, A being 
slightly better for homozygote  deficiency.  NHet performs 
less  well than these two in all  cases. The test based on 
f was found in a few comparisons (Table 2) to be 
slightly more powerful than  the jA test, but its computa- 
tional requirements  are  much heavier. Comparison to 
the  upper  bound (NEYMAN-PEARSON lemma) shows 
that no substantial improvement is to  be  expected from 
yet unknown tests. 

We investigated some cases where different geno- 
types  have different f;,. (Table 3 )  , subject to the restric- 
tion that  there is no excess  of  any homozygote class,  as 
found  in offspring of  crosses between males and females 

with different allelic frequencies or no deficiency of any 
homozygote  class,  as for the Wahlund effect. In  both 
cases there may be  an excess  of some heterozygote 
classes and deficiency of some others.  There is no sim- 
ple rule as to which test will be  the best one when J;, 
values are very heterogeneous. 

DISCUSSION 

Power of the tests: The main  result is the behavior 
O f j A  and  Uunder model 2 that  are best for heterozy- 
gote deficiency and excess, respectively, and close to 
each  other  in  both cases. When f i s  close to 0 ,  they 
have almost  identical power. When  model  2 is true 
and  fis small, i t  is expected  that  estimators of f that 
have  low variance under  the  null hypothesis will pro- 
vide asymptotically more powerful tests. f ,  f T  and f A  
are asymptotically normal with variance 1 / ( N (  k - 
1 ) ) when f = 0 (YASUDA 1968; ROBERTSON and HILL 
1984; and see APPENDIX).  The variance of fc is also 
1 / ( N (  k - 1 ) ) when  allele  frequencies are identical 
but is generally  larger ( CHAKRABORTY and DANKER- 
HOPFE  1991, eq.  4.2b).  The score ( U )  test being  iden- 
tical to  the f T  test and NHet to sc, i t  is expected  that 
the  score  and ]A tests will be  generally  more powerful 
than NHel when f is small. This is indeed observed 
even for large values off, NHet being less efficient. An 
estimate of power can  be deduced from  the  large 
sample  normality and variance of f A  and  under  the 
null hypothesis as follows: y = I f 1  + N (  k - 1 ) - x, 
where x is such that  the upper-tail probability at x of 
the  normal  distribution is the type I error  and  the 
power is the lower tail probability at y of the  normal 
distribution.  This  appears  to  be  an  overestimate  for 
low values of N (  k - 1 ) .  

Consistency: Apart from power, the  important differ- 
ence between the tests  is one of  consistency. A test such 
as the exact X' test is consistent, ie., its power tends to 
1 when sample size increases (e .g . ,  STUART and ORD 
1991 ) for any deviation from Hardy-Weinberg propor- 
tions in model 1. The different estimators of fconverge 
in probability to nonnull values, if for all  alleles the 
expected homozygote  deficiency is 2 0  and at least one 
is >0, or if all  homozygote deficiencies are 5 0  and  at 
least one is < O .  Such situations include  inbreeding or 
the Walhund effect. In all  of these cases, the ]A, U ,  and 
NHer tests will be consistent. However, some simple situa- 
tions in  which a  better test exists should not be over- 
looked. For example, when for an arbitrary number 
of alleles, the alternative hypothesis is selection for or 
against one particular genotype (homozygote or het- 
erozygote),  the best test statistic is the  number of indi- 
viduals  with such a genotype in the sample. HERNANDEZ 
and WEIR ( 1989) discuss procedures to study deviations 
of each heterozygote class from Hardy-Weinberg pro- 
portions. 

Multiple  samples: The definitions of SA and U can 
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TABLE 3 

Power comparisons (model 1) 
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Parameters 
Upper 

Power of tests 

f N P bound fA U NHGl Pr x2 G 

-9/16 0 -63/208 

-1/11 -9/319 
-1/6 3/22 -1/16 

1/33  1/21 
-1/33 1/9  1/51 

) 
(-9ig1 0 ) 
9/49 0 9/91 

-9/49 0 -9/91 

1/11 9/319 
1/6 -3/22 1/16 

1/10 1/75 
3/14 -3/35 9/91 

0 0  
9/16 0 63/208 

50 

50 

100 

50 

50 

50 

100 

50 

(0.35  0.3  0.35) 

(0.525  0.275  0.2) 

(0.55 0.3 0.15) 

(0.35  0.3  0.35) 

(0.35  0.3  0.35) 

(0.525  0.275  0.2) 

(0.4  0.25  0.35) 

(0.35 0.3 0.35) 

0.9429 

0.2141 

0.1368 

0.1931 

0.1909 

0.2276 

0.5215 

0.9279 

0.3984 

0.1332 

0.1061 

0.1571 

0.1441 

0.1614 

0.3425 

0.7885 

0.7687 

0.1551 

0.1036 

0.1548 

0.1551 

0.1537 

0.3195 

0.7107 

0.8603 

0.1441 

0.0817 

0.1400 

0.1273 

0.1453 

0.3465 

0.8189 

0.8042 

0.0794 

0.0744 

0.1095 

0.0938 

0.1229 

0.2735 

0.8244 

0.8186 

0.0879 

0.0703 

0.1014 

0.1016 

0.1134 

0.2620 

0.7963 

0.8145 

0.1084 

0.0655 

0.0907 

0.1080 

0.0871 

0.2510 

0.7754 

Each  comparison is based on 10,000 independent samples.  See  Table 1 for SEs. For  convenience we  give f as a semimatrix 
in which jz = Xjti jJpj/ (1 - pi) (since & = JJ . 

readily be  extended  to I samples, i e . ,  different popula- 
tions or different loci, if it can be assumed that  there 
is no gametic disequilibrium between them: 

is the  root of 

and 
k. . 

u = Z s = C i % - Z N , ,  (12) 
I 1 i=l Pi 

the  latter test being easier to compute in practice, be- 
cause the distribution of the score U under  the null 
hypothesis can be obtained by summation of single sam- 
ple scores which distributions are  generated  indepen- 
dently. Such multisample tests are  preferable  to  a proce- 
dure like Fisher’s combination of probabilities test ( e.g., 
YATES, 1955 ) . 

Conclusion: The  score ( U) or j k  tests are clearly to 

be  used when the alternative hypothesis of impor- 
tance  for  the  problem at  hand is described by a  single 
parameter / similar for all genotypes. Inbreeding 
large  enough to  be  detected by single-sample tests 
occurs in various biological contexts (e.g., JARNE and 
CHARLESWORTH 1993; THORNHILL 1993), but  the 
power remains low for  some  applications (ROBERT- 
SON and HILL 1984). In such cases, the multisample 
U test will be useful. 
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APPENDIX 

We first  show that% converges in probability to f = 
0. Generally eq. 8 has a unique  root within ] fmin, 1 [ ,  
where 

If there  are  at least two nonempty homozygote classes, 
then fA > fmin z -1 / 2. If there is only one nonempty 
homozygote class  (say nkk > 0 )  , then f~ = ( N p k  - a k k )  / 
(~(1-+k))?- l . I f there isnohomozygote , f~=-1  
is a suitable setting. 

Asymptotically the probability that fA = -1 or 1 is 
null hypothesis. Otherwise, writing 

by Taylor’s theorem, for some c between f A  and 0, g( S ,  
f A )  = g( S ,  0 )  + g’ ( S ,  c)fa. By definition  ofjk (eq. 8 ) ,  

All observed genic ( A )  and genotypic (&) frequen- 
cies converge in probability to the  expected values. 
Then 

g(S,$)  = 0 so f A  = -g(S, O)/g’(S, c ) .  

converges in probability to 0, and for all c (  1 > c > fmin 
2 - l ) ,  

that converges to a strictly  negative  value. HencefA con- 
verges in probability to f = 0. 

Large  sample variances: They have been  computed 
forf (YASUDA 1968)  and f T  ( CURIE-COHEN  1982; ROE 
ERTSON and HILL 1984). In  the  present case the stan- 
dard  line of reasoning for maximum likelihood esti- 
mates can be simplified, as first  shown  below, and it 
appears  that  the variances of the  three estimates can 
be  obtained by the same method. 
1: Considering d log &/ d f, by Taylor’s theorem,  for 

some f * between 0 and f and p* between p and p ,  

/*.P* 

+ (p ,  - j,) a 2  log 1 . (A.4) 
k- 1 

I af ap, i * . p *  

The first term on the  right  member is null (by defini- 
tion off)  , so 
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By standard  arguments (e.g., STUART and O m  1991 ) , 

and 

converge to their expectations at (0, p)  , which are 1 
- k and 0, respectively, and 

is asymptotically normal with variance k - 1. Therefore 
fhasvariance l / ( N ( k -   1 ) ) .  

: For some f * between 0 and  and p * between p 
and p ,  

d log L 

f *fP* 

+ X (p i  - A )  d 2  log 1 . (A.6) 
k- 1 

i af aPj f*.p* 

The first term on the  right  member is null by definition 
of and by exactly the same line of reasoning as for 
f, it is shown that f A  is asymptotically normal with  vari- 
ance 1 / ( N ( k  - 1 ) ) .  
fT: In the same way 

d log L 

where the first term on the  right  member is U. So 
U /  f i  is also  asymptotically normal with variance k - 
1, and by eq. 10, f, also  has variance 1 / ( N (  k - 1 ) ) . 


