PRIMER NOTE

Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles maculipennis

M. WEILL, C. SEVERINI, M.-L. GUILLEMIN, C. BERTICAT, A. BERTHOMIEU,F. ROUSSET and M. RAYMOND
Institut des Sciences de l'Evolution, Laboratoire de Génétique et Environnement, CC065, UMR CNRS 5554, Université de Montpellier II, France

Abstract

The Anopheles maculipennis complex includes the most important malaria vectors of the western Palearctic. Anopheles maculipennis s.s., one member of this complex, is a reported vector in the Middle East. Here we describe the isolation of $\mathbf{1 5}$ microsatellite polymorphic loci from the An. maculipennis s.s. genome, displaying a high among individual diversity ($0.37-0.77$) in a sample from France. Three loci displayed a significant departure from Hardy-Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining 12 loci are good candidates for further genetic studies in this species.

Keywords: Anopheles maculipennis, malaria, microsatellites, polymorphism
Received 24 March 2003; revision accepted 28 April 2003

The Anopheles maculipennis complex includes the most important malaria vectors of the western Palearctic (White 1978; Stegniy 1982). One member of this complex, An. maculipennis s.s. was the common malaria vector in Bosnia Herzegovina and a reported vector in Eastern Europe (Jetten \& Takken 1994). Its role as a malaria vector in northern and western Europe is considered minor, because of its reduced anthropophily (Jaenson et al. 1986), although there is the intriguing possibility that the present zoophily is a recently evolved trait, triggered by agricultural and social changes during the nineteenth century (Wesenberg-Lund 1920-21). In Armenia in 1997, results of entomological investigations carried out after the reappearance of malaria indicated An. maculipennis s.s. as a possible vector responsible for the transmission (Romi et al. 2002) because of its wide distribution, high densities and its propensity to enter houses and buildings (i.e. endophily).

In order to study the population structure of this potential malaria vector, we developed and characterized microsatellite loci for this species. Microsatellite loci were isolated as described by Estoup et al. (1993) using detailed protocols of A. Estoup and O. Martin available at http:// www.inapg.inra.fr/dsa/microsat/microsat.htm. Genomic

[^0]DNA was extracted from a pool of 20 female An. maculipennis s.s. collected on 14 January 1999, in a natural cave near Montpellier ('Grotte du Zoo') where they were overwintering. DNA was totally digested by Sau3A, size-selected fragments ($400-900 \mathrm{bp}$) were ligated into a pUC 18 vector (Pharmacia) digested by BamHI, and plasmids were used to transform XL1-blue competent cells (Stratagene). Approximately 3000 recombinant clones were transferred onto Hybond-N+ nylon membranes (Amersham) and screened with an equal mixture of $(\mathrm{TC})_{10}$ and (TG) ${ }_{10}$ digoxigenin end-labelled oligonucleotide probes (Boehringer Mannheim). Plasmid DNA from 59 positive clones was purified using QIAprep Spin Miniprep Kit ${ }^{\mathrm{TM}}$ (Qiagen) and sequences of inserts were obtained with an ABI 310 sequencer (Perkin-Elmer).

Polymerase chain reaction (PCR) primers were designed flanking 26 microsatellite sequences using the computer program oligo (version 4.0, National Biosciences). Primer pairs were chosen to amplify short ($80-260 \mathrm{bp}$) PCR products.

Microsatellite variability was analysed using 53 individuals from Montpellier, France. DNA was isolated from single specimens following Collins et al. (1987). The shortest primer, or if they were of the same length the forward primer, has a 19-base extension at its 5^{\prime} end with the sequence 5'-CACGACGTTGTAAAACGAC-3' (Roy et al. 1996). This sequence is identical to an infrared-labelled
Table 1 Characteristics of 15 microsatellite loci of Anopheles maculipennis s.s.

Locus	Repeated motif in cloned allele (bp)	Primer sequences ($5^{\prime}-3^{\prime}$)	Accession no.	$\begin{aligned} & \text { ASR } \\ & \text { (SCA) } \end{aligned}$	PCR conditions ($T_{\mathrm{a}}{ }^{\circ} \mathrm{C} / \mathrm{mm} \mathrm{MgCl}_{2}$)	n	No. alleles	Gene diversity	$F_{\text {IS }}$
MacuKY	$(\mathrm{CA})_{5} \mathrm{~N}_{6}(\mathrm{CA})_{2} /(\mathrm{CA})_{11}$	F: CTTTCAGGGCATTTATTTTG R: ATGGATGGAGTGGATTG	AJ550005	$\begin{aligned} & 176-190 \\ & (186) \end{aligned}$	50/1.2	52	7	0.76	0.32
MacuW161	(CA) ${ }_{9}$	F: CAAGATGGCGGAGAA R: TTTCTTTGGAACGGC	AJ550006	$\begin{aligned} & \text { 113-119 } \\ & (117) \end{aligned}$	56/1.2	53	4	0.61	0.05
MacuGQ	$(\mathrm{AC}) 9$	F: GССТТTСGTCСАССТ R: GСТААСАСGСТССАААС	AJ550007	$\begin{aligned} & 179-193 \\ & (187) \end{aligned}$	56/1.2	49	5	0.54	-0.21
MacuW149	$(\mathrm{AG})_{2} \mathrm{AA}(\mathrm{AG})_{12}$	F: TGCTGITTTTCGTGCT R: TCCAGTAGCTTTCCGT	AJ550008	$\begin{aligned} & 242-258 \\ & (254) \end{aligned}$	56/1.2	46	6	0.49	0.65
MacuU182	$(\mathrm{AC}){ }_{3} \mathrm{AG}(\mathrm{AC})_{8}$	F: ATCTTGATGGCAAGGG R: GAAGGGCAGGGAATG	AJ550009	$\begin{aligned} & 115-147 \\ & (123) \end{aligned}$	56/1.2	53	8	0.71	0.10
MacuUF	$(\mathrm{CA})_{8} \mathrm{TA}(\mathrm{CA})_{4}$	F: CCGTCAAAACGACTTC R: GATCTGTCCCATCCTGT	AJ550010	$\begin{aligned} & 158-182 \\ & (174) \end{aligned}$	55/1.2	53	8	0.77	0.16
MacuU125	$(\mathrm{CA})_{4} \mathrm{CG}(\mathrm{CA})_{2} \mathrm{CG}(\mathrm{CA})_{4} \mathrm{TA}(\mathrm{CA})_{3} \mathrm{G}(\mathrm{CA})_{4}$	F: CCCACGATAATTGGTTC R: TCGCGCTCGTAAATC	AJ550011	$\begin{aligned} & 253-263 \\ & (259) \end{aligned}$	$57 \rightarrow 47 / 2.5$	43	5	0.55	0.03
MacuQ72	(CA) ${ }_{9}$	F: AgTGGAGAAGTGGCAAA R: CGTTCGTGTCCATAAATC	AJ550012	$\begin{aligned} & \text { 157-169 } \\ & (161) \end{aligned}$	$57 \rightarrow 47 / 2.5$	50	4	0.65	0.23
MacuO177	$(\mathrm{CA})_{7}$	F: TGGCAAGGCAATGT R: GATCCCGTGGCTG	AJ550013	$\begin{aligned} & 163-185 \\ & (169) \end{aligned}$	$57 \rightarrow 47 / 2.8$	51	4	0.57	0.03
MacuM34	$(\mathrm{GT})_{2} \mathrm{ATC}(\mathrm{TG})_{5} \mathrm{TA}(\mathrm{TG})_{2} \mathrm{CG}(\mathrm{TG})_{2} \mathrm{TA}(\mathrm{TG})_{2}$	F: CATTGCCTTCGTGACC R: СTTGGCCGCTACCTC	AJ550014	$\begin{aligned} & 140-152 \\ & (150) \end{aligned}$	$57 \rightarrow 47 / 2.5$	52	2	0.38	0.09
MacuO150	$(\mathrm{CA})_{6} \mathrm{TA}(\mathrm{CA})_{4}$	F: CGTAACGAGCCAAAC R: GATCGTCCCTATGTAC	AJ550015	$66-76$ (72)	$57 \rightarrow 47 / 2.8$	52	3	0.53	0.53
Macul3	$\mathrm{GCCC}(\mathrm{GC})_{2}(\mathrm{GT})_{8}$	F: ATCTCGITTCGCACTC R: ATCGCTTCCGTTCAC	AJ550016	$\begin{aligned} & 105-129 \\ & (115) \end{aligned}$	47/2	53	7	0.62	-0.12
MacuO185	$(\mathrm{CA})_{3} \mathrm{GA}(\mathrm{CA})_{7}$	F: GAGTCGAGCCGAAAAG R: CCGTTGGGAAATGTATG	AJ550017	$\begin{aligned} & 93-105 \\ & (101) \end{aligned}$	$57 \rightarrow 47 / 2.5$	52	5	0.37	0.37
MacuA159	$(\mathrm{AC})_{3} \mathrm{GC}(\mathrm{AC})_{2} \mathrm{AA}(\mathrm{AC})_{2} \mathrm{CC}(\mathrm{AC})_{6}$	F: CGTGGGTCGTAAGCA R: ACAGGGTAAACTATCGCC	AJ550018	$\begin{aligned} & 140-152 \\ & (140) \end{aligned}$	$57 \rightarrow 47 / 2.5$	52	5	0.65	0.24
MacuG66	$(\mathrm{CA})_{3}(\mathrm{CG})_{2}(\mathrm{CA})_{7}$	F: CGTTCCGATAGTTGCT R: ATGATTGTTGCGTGTG	AJ550019	$\begin{aligned} & 85-89 \\ & (85) \end{aligned}$	$57 \rightarrow 47 / 2.5$	52	2	0.50	0.01

[^1](LI-COR dye: IRD-700 or IRD-800) universal M13 forward primer (Steffens et al. 1993). PCR amplifications were carried out in $20-\mu \mathrm{L}$ reaction volume, from approximately $5-10 \mathrm{ng}$ of template DNA. Reaction mixture contained $1 \times$ Eurogentec PCR buffer [750 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.8,200 \mathrm{~mm}$ (NH4) ${ }_{2} \mathrm{SO}_{4}, 0.1 \% ~(\mathrm{v} / \mathrm{v})$ Tween 20], $200 \mu \mathrm{~m}$ each dNTP, 20 pmol of the primer with M13 tail, 10 pmol of the nontailed primer, 20 pmol of infrared-labelled M13 forward primer and 1 U Eurogentec Taq polymerase. Amplifications were performed using a Mastercycler gradient Eppendorf thermocycler under the following conditions: an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min followed by 30 cycles of 30 s at $94^{\circ} \mathrm{C}, 30$ s at the annealing temperature T_{a} (Table 1), 30 s at $72^{\circ} \mathrm{C}$ and a final elongation step of 2 min at $72^{\circ} \mathrm{C}$. To optimize the PCR reaction for some primers, alternate touchdown annealing temperature were used (Table 1) based on the above profile with annealing temperature decreasing $1^{\circ} \mathrm{C}$ per cycle during 10 cycles, followed by 20 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $50^{\circ} \mathrm{C}$ and 30 s at $72^{\circ} \mathrm{C}$. Amplified fragments were separated on 6.5% polyacrylamide denaturing gels, using a LI-COR (ScienceTec IR2 LI4200S2G). Size of the PCR products was determined by comparing with the clone size (amplification of the clone loaded every six lanes on each gel). If necessary, two or more runs were performed to verify the allele typing, by re-ordering the samples.

Of the 26 pairs of primers, 10 failed to amplify. The 16 other loci yielded repeatable and scorable results. All except one were polymorphic, showing two to eight alleles (Table 1). In order to assess the usefulness of the loci for population genetic analysis, heterozygote deficiency (an indication of the presence of null alleles at high frequency) was studied using Genepop version 3.3 (Raymond \& Rousset 1995). Taking into account multiple testing (Hochberg 1988), three loci displayed a significant ($P<0.05$) departure from Hardy-Weinberg equilibrium, due to excess of homozygotes. Contingency table tests for linkage disequilibria were computed for all pairs among the remaining 12 loci. No test remained significant after correcting for multiple tests. Diversity among individuals within samples and $F_{\text {IS }}$ estimates following Weir \& Cockerham (1984) were determined using genepor version 3.3 (Raymond \& Rousset 1995). In total, 12 polymorphic loci without significant heterozygote deficiency are thus available for population genetics studies of Anopheles maculipennis.

Acknowledgements

The study was supported by the COPERNICUS-2 RTD project contract ICA2-CT-2000-100046 of European Commission; we are grateful to Evelyne Machetel for help in mosquito collection, Arnaud Estoup and Claire Billot for help in microsatellite cloning. Publication ISEM 2003.1037.

References

Collins FH, Mendez AM, Rasmussen MO et al. (1987) A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene, 37, 37-41.
Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterisation of $(\mathrm{GT})_{n}$ and $(\mathrm{CT})_{n}$ microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Research, 21, 1427-1431.
Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800-802.
Jaenson TGT, Lokki J, Saura A (1986) Anopheles (Diptera: Culicidae) and malaria in northern Europe, with special reference to Sweden. Journal of Medical Entomology, 23, 68-75.
Jetten TH, Takken W (1994) Anophelism without malaria in Europe. A review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agricultural University Papers, 1-69.
Raymond M, Rousset F (1995) GENEPOP (Version 1.2): a population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.
Romi R, Boccolini D, Hovanesyan I et al. (2002) Anopheles sacharovi (Diptera culicidae): a reemerging malaria vector in the Ararat Valley of Armenia. Journal of Medical Entomology, 39, 446-450.
Roy R, Steffens DL, Gartside B et al. (1996) Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer. Journal of Forensic Sciences, 41, 418-424.
Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated sequencing of M13. Biotechniques, 15, 580-582.
Stegniy VN (1982) Genetic adaptation and speciation in sibling species of the eurasian maculipennis complex. In: Recent Development in the Genetics of Insect Disease Vectors (eds Steiner WWM, Tabachnick WJ, Rai KS, Narang S), pp. 454-464. Stipes Publishing Co., Champaign, IR.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Wesenberg-Lund C (1920-21) Contributions to the Biology of the Danish Culicidae. Mémoires de l'Académie Royale des Sciences et Lettres de Danemark, Copenhague, US.
White GB (1978) Systematic reappraisal of the Anopheles maculipennis complex. Mosquito Systematics, 10, 13-44.

[^0]: Correspondence: M. Weill. Fax: (33) 4671736 22; E-mail: weill@isem.univ-montp2.fr

[^1]: ASR, allele range size (bp); SCA, size of cloned allele (bp); n, sample size; gene diversity (or 'expected heterozygosity', measured as one minus frequency of identical pairs of genes among different individuals); $F_{\text {IS }}$ estimates following Weir \& Cockerham (1984); bold characters denote a significant ($P<0.05$) heterozygote deficiency, taking multiple tests (Bonferroni method) into account. P-values were estimated by the Markov chain method when there were more than four alleles.

