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Abstract. 

Male mammals may commonly kill conspecific offspring. The benefits of such infanticide to

males, and its costs to females, likely vary across mammalian social and mating systems. Here

we use comparative analyses to show that infanticide primarily evolves in social mammals

where reproduction is monopolized by a minority of males. It has not promoted social

counter-strategies such as female gregariousness, pair-living, or changes in group size and

sex-ratio but is successfully prevented by female sexual promiscuity, a paternity dilution

strategy. These findings indicate that infanticide is a consequence, rather than a cause, of

contrasts in mammalian social systems affecting the intensity of sexual conflict.

One Sentence Summary

Infanticide by males is an evolutionary consequence, rather than a cause, of contrasts in

mammalian social systems and reflects the intensity of sexual conflict.

Keywords: infanticide, mammals, phylogeny, social system, mating system, reproductive 

skew, dominance tenure, polyandry
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Main text

Infanticide by males is widespread in mammals and may represent the main cause of infant

mortality in some populations (1). It has long been viewed as a sexually selected strategy that

increases mating opportunities for killer males by shortening postpartum infertility in the

victim’s mother (2, 3). This is supported by natural observations across taxa showing that

males target unrelated infants and often impregnate the victim’s mother afterwards (1, 3, 4).

Attempts to explain the taxonomic distribution of infanticide have however been mainly

limited to investigations of the life-history correlates of male infanticide (5-8), showing that it

rarely occurs where it does not accelerate the mother's return to sexual activity, as in seasonal

breeders who cannot resume cycling before the next breeding season (8). 

Several scenarios have linked the distribution of infanticide across species to the evolution of

social organization and mating systems in mammals, and they remain largely untested or

disputed (9, 10). According to the sexual selection hypothesis, the distribution of infanticide is

expected to be modulated by contrasts in social systems that affect the intensity of male

intrasexual competition (3, 5, 8). Male infanticide should thus be prevalent in species where a

few males mate with multiple females and monopolize most reproductive opportunities.

However, females may respond to infanticide by developing counter-strategies that may refine

patterns of associations across species. Social counter-strategies may include the evolution of

female sociality (6, 11, 12), of permanent male-female associations (13-15), or of changes in

the group sex-ratio (6, 11, 12, 15) because females may form coalitions with other females or

with resident males to defend their progeny against male invaders. Additionally, females may

mate with multiple partners to confuse paternity and dissuade infanticide (6, 16, 17), which

may thus be absent in species with pronounced sperm competition. The evolutionary arms

race between the sexes driven by male infanticide has generated confusion and controversy

regarding the role of infanticide in the evolution of mammalian societies, calling for more

integrative studies. 

Here we use information gathered on 260 mammal species including 119 species with, and

141 without infanticide (Figure 1) to identify how variation in social organization and mating

systems may have favoured or prevented the evolution of infanticide by males using

phylogenetic analyses (18). Specifically, we test if infanticide has primarily evolved in species

where females breed throughout the year and some males have high reproductive monopoly,

and if it has selected for social and sexual counter-strategies, including transitions towards
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female gregariousness, permanent male-female associations, changes in group size or sex-

ratio or increases in female sexual promiscuity. We included infanticide records from wild

populations for which the killer was unambiguously identified as an adult male. Species for

which infanticide had never been observed were included only if natural observations on

females and juveniles were available over more than 3 reproductive seasons, to minimize the

risk of misclassifying them as “non-infanticidal”. The phylogenetic relatedness between

species was inferred from the updated mammalian supertree (19) and analyses were also

replicated in primates exclusively, which confirmed results obtained across mammals (see

supplementary results).  

The distribution of male infanticide is closely associated with the absence of seasonal or

‘annual’ breeding (defined as an average inter-birth interval of 360-370 days). Infanticide

occurs in a majority of non-annual breeders (76% of 97 species), compared to 28% of 134

annual breeders (lambda=0.67, t=-4.0, p<0.001). A long lactation (relative to gestation) and

the absence of a postpartum oestrus, two life-history traits affecting the time to cycling

resumption in mothers of killed infants, are also associated with male infanticide, though their

association disappears when controlling for annual breeding (for both traits, p as estimated by

MCMCglmm (pMCMC)>0.08 while pMCMC for annual breeding <0.001). While previous

studies have used the ratio of the duration of lactation to that of gestation to estimate

infanticide risk (6-8), our results reveal that this association is weak: lactation exceeds

gestation in 25 of 45 mammal species with infanticide, and in 38 of 89 species without

infanticide. Other aspects of life-history were not associated with male infanticide (longevity:

n=210 species, pMCMC=0.08; litter size: n=230 species, pMCMC=0.07; relative offspring

weight at birth: n=191 species, pMCMC=0.59), suggesting that infanticide evolution is not

determined by a species’ pace of life. Overall, the possibility for females to breed throughout

the year is the only life-history trait examined that significantly explains the distribution of

infanticide, confirming previous work and suggesting that infanticidal males gain extra

mating opportunities due to earlier cycle resumption of the victim’s mother in non-annual

breeders. Such males are thereby redirecting maternal investment from unrelated offspring

towards their own future offspring. 

Comparing the occurrence of male infanticide across social systems, we find that males

commit infanticide more frequently in stable mixed-sex groups (66% of 112 species) than in

solitary species (40% of 78 solitary species, pAN=0.01), in species with female-only groups
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(23% of 31 species, pAN=0.006) and in pair-living species (18% of 39 species, pAN<0.001).

Phylogenetic reconstructions confirm that variation in social organization is a key determinant

of the evolution of male infanticide, which is more likely in stable bisexual groups than in any

other social system (see supplementary table 1). In addition, social groups contain, on

average, 1 male per 2.5 females in species with male infanticide (SD= 1.7, n=56 species), but

only 1 male for 1.3 females in species without infanticide (SD= 3.2, n=19 species, Figure 2a;

lambda=0.47, t=-3.3, p=0.002; this is not an effect of differences in group sizes, as group size

is similar in both sets of species: p=0.28). Phylogenetic reconstructions suggest that a biased

group sex-ratio is a determinant, rather than a consequence, of the evolution of male

infanticide: the strongest female biases are observed just before or at the transition towards

male infanticide, while there are few or no subsequent changes once infanticide has evolved

(see supplementary results). 

In line with this, infanticide occurs more frequently where reproduction is monopolized by a

few males (Figure 2b): the median percentage of offspring sired by the alpha male is 67%

(SD=19.9, n=15 species) in species with infanticide, compared to 35% (SD=22.2, n=5) in

species without (lambda=0.75, t=3.9, p=0.001). Finally, males retain their dominant position

for shorter durations in species with infanticide (Figure 2c): on average, dominance tenure

covers two inter-birth intervals (if the females were to successfully wean each litter) (SD=1.0,

n=34 species), compared to four in species without infanticide (SD=1.2, n=6) (lambda=0.0,

t=-3.4, p=0.001). These correlations hold after controlling for the effect of annual breeding,

which may also affect male ability to monopolize females (Supplementary Table 2). Overall,

these findings indicate that a high male monopolization potential favours transitions towards

infanticide by allowing males to maximize their reproductive output in systems where the

costs of holding dominance shorten their breeding tenures (20). 

Male infanticide has been proposed to alter social evolution by favouring female

gregariousness or permanent male-female associations or by promoting a higher number of

resident males that may help mothers to protect their infants from male intruders. We found

no support for any of these scenarios. Infanticide risk is low in solitary species, the ancestral

mammalian social organization (9), and as such is unlikely to motivate evolutionary

transitions from a solitary lifestyle to other social organizations. Phylogenetic reconstructions

confirm that male infanticide is significantly more likely to evolve after transitions towards

group-living than in their solitary ancestors (see above). The presence of male infanticide
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does not increase the likelihood of a transition from solitary living to social monogamy, to

female gregariousness or to group living (see supplementary table 1). In addition, among

species living in stable bisexual groups, male infanticide is not linked to changes in the degree

of female sociality (5.5±5.1 females per group in 56 infanticidal species compared to 8.9±4.0

in 13 non-infanticidal species; pMCMC=0.93). These findings indicate that infanticide by

males did not trigger important transitions in mammalian social evolution. Population studies

have nevertheless highlighted relationships between infanticide rates and group size (e.g., 21),

suggesting that the social consequences of infanticide may differ within populations versus

across species, or that selection exerted by infanticide is insufficient at inducing major shifts

in mammalian social organization. 

Infanticide risk may also lead to the evolution of sexual counter-strategies by females, who

might prevent infanticide by mating with many males to dilute paternity (6, 16, 17). To test

this hypothesis, we investigated evolutionary relationships between infanticide and testis size,

an indicator of the intensity of sperm competition (22, 23). In support of the paternity dilution

hypothesis, phylogenetic reconstructions indicate that relative testis size is larger in lineages

in which more time has elapsed since the evolution of infanticide. State-dependent

diversification models (24) show that increases in testis size follow rather than precede

transitions to infanticide as they are not detected on branches immediately before transitions

to infanticide, suggesting that infanticide exerts directional selection on relative testis size

(18). In addition, infanticide is subsequently lost in lineages where testes have grown large

(Figure 3; pMCMC=0.02; see supplementary results), indicating that infanticide may

disappear where female attempts to prevent male sexual monopolization are successful.

Our findings support key predictions of the sexual selection hypothesis: males primarily kill

the offspring of rivals in stable bisexual groups where a few males monopolize reproduction

over short periods. Increased testis size following evolutionary transitions to infanticide and

secondary loss of infanticide in species with large testes suggests that female paternity

dilution strategy efficiently reduces infanticide risk, and emphasizes the reversible nature of

infanticide, which may appear and disappear according to the evolutionary arms race between

the sexes.  While past studies failed to find comparative evidence for sexual counterstrategies

to infanticide (7, 16), our sample spanning all mammals, combined with phylogenetically

controlled analyses, and our focus on testis size to index female sexual promiscuity may

explain divergent results.
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Our analyses build on five decades of field observations to understand the distribution of

species differences in the occurrence of infanticide by males across mammalian societies. The

evolution of infanticide is largely determined by variation in the intensity of male-male

contest competition and has not promoted major switches in mammalian social organization.

However, it has impacted the evolution of mating systems by increasing female sexual

promiscuity as a paternity dilution strategy. These findings suggest that the distribution of

infanticide across mammals is a consequence of contrasts in social and mating systems, and

closely reflects variation in the intensity of intra- and inter-sexual conflict. 
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Figure legends

Figure 1: Distribution of male infanticide across mammals

Male infanticide has been reported for about half of all species in our sample (open circles)

and seems to have evolved independently multiple times. It mostly occurs in social (dark grey

branches), less in solitary (light grey branches), and least in monogamous species (black

branches). Animal drawings are from phylopic.org (for full credit see (18)).

Figure 2: Infanticide is associated with polygynous mating systems

Male infanticide occurs in species in which (a) social groups contain more females per male,

(b) dominant males obtain a higher share of reproduction in a given season, but (c) maintain

their dominant position for shorter periods (here measured as the average number of inter-

birth intervals). 

Figure 3: Loss of male infanticide occurs in species with large testes

In some lineages in which males commit infanticide, testes appear to increase in size (relative

to body mass) and subsequently, male infanticide is lost when testes are relatively large.

7

190

195

200

205

210

215

220



  

Old World Primates

Hares
Squirrels

M
arm

ots

M
ic

e

M
a
rs

u
p

ia
ls

B
a
ts

M
o
ng

oo
se

s

Felid
s

Canids

Bears
Seals & sealions

Martens

U
n
g
u
la

te
s

N
e
w

 W
o
rl

d
 m

o
n
k
e
y
s

Gre
at a

pes

L
e
m

u
rs

Dieter Lukas
Figure 1



No Infanticide Infanticide

1
2

4
10

Fe
m

al
es

 p
er

 m
al

e
(a)           Sex ratio

n= 26 species n= 53 species

No Infanticide Infanticide

0
20

40
60

80
10
0

%
 o

ff
sp

rin
g 

si
re

d 
by

 d
om

in
an

t

(b)  Reproductive skew

n= 5 species n= 18 species

No Infanticide Infanticide

0
2

4
6

N
um

be
r o

f i
nt

er
-b

irt
h 

in
te

rv
al

s

(c)      Tenure length

n= 6 species n= 34 species

Dieter Lukas
Figure 2

Dieter Lukas




Male infanticide is
unchanged gained lost

-1
.5

-1
.0

-0
.5

0.
0

1.
5

1.
0

0.
5

Re
la

tiv
e 

te
ste

s s
iz

e

Dieter Lukas
Figure 3



Supplementary Materials

for

The evolution of infanticide by males in mammalian societies

D. Lukas* & E. Huchard

contact: dl384@cam.ac.uk

This file includes:

Data and Methods (pages 1-6)

Supporting results for multivariate and the Ornstein-Uhlenbeck models (pages 6-7)

Credit for animal drawings used in Figure 1 (page 9)

Supplementary Table 1: inferences from Bayestraits' Discrete (page 10)

Supplementary Table 2: results from analyses run across all mammals (page 11)

Supplementary Table 3: results from analyses run across primates (page 12)

Supplementary Table 4: data on distribution of male infanticide (pages 13-22)

Data and Methods

To determine the taxonomic distribution of male infanticide, we relied on its

observed distribution, which is documented for an increasing number of species that have

been the focus of detailed and prolonged field studies. We took care to include only species

in which this behaviour could have been observed in natural populations because they had

been studied continuously over more than 3 reproductive seasons, including observations of

females with unweaned juveniles, in order to minimize the risk of introducing noise in the

data if some species were misclassified as "male infanticide absent" (see Supplementary

Table 4). For the opposite, we only included a species as "male infanticide present" if the
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data unambiguously showed that the individual committing infanticide was an adult male.

From databases and reviews we extracted information on life-history (seasonal breeding,

lactation and gestation length, inter-birth interval, longevity, body mass at birth, litter size

[25-27] and postpartum oestrous [28]), on mating system (reproductive skew [22], length of

dominance tenure in males [20], testis size as an index of multiple male mating by females

[23,29-34]) and on sociality (social organization [9], group composition [20,35]). We

classified the social organization of a species as solitary if breeding females tolerate the

proximity of adult conspecifics only during the mating season; as monogamous if a single

breeding female and a single breeding male share a territory, potentially including non-

breeding offspring; as female-only groups where stable groups of breeding females

associate permanently and males only join for mating; and as stable mixed-sex groups if

two or more breeding females associate permanently with one or more male (9). Seasonal

breeding was defined as an interbirth interval comprised between 360 and 370 days, and we

used data on intra-annual variability in temperature (36) to verify that yearly breeding thus

defined is associated with ecological seasonality (yearly variance in temperature 38.7,

compared to 27.5 for non-seasonal breeders; lambda=0.92, t=-0.1, p<0.001). We chose to

exclude species reproducing always at the same season but less than once a year on average

from the seasonally breeding species, as infanticide is likely to provide males with benefits

in this context if a female resumes cycling one year earlier than she would if her infant was

alive. We provide a full data file in text format at the Knowledge Network for

Biocomplexity (https://knb.ecoinformatics.org). 

We relied on the updated mammalian supertree (19) to reflect the phylogenetic

relatedness between species. The tree was truncated to match our sample using functions of

the package 'ape' (37) in the statistical software R (48). We resolved polytomies randomly

for all analyses that require bifurcating trees, and repeated each analysis with three

independent resolutions, which in all cases gave consistent results. Phylogenetic

reconstruction of discrete traits were performed across trees with dated branch lengths,

across ultrametric trees in which all tips have the same distance to the root and branch

lengths are proportional to the number of descendants (39), and across trees in which all
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branch lengths were transformed to equal one. 

We used different approaches and methods to assess our hypotheses according to

the type of prediction and data. Initially, we compared values of currently living species in

which male infanticide is present to those in which male infanticide is absent without taking

phylogeny into account by using Wilcoxon-tests. When assessing whether the distribution

of a trait differed between species that were grouped into discrete categories while taking

phylogeny into account, we used phylogenetic Anova as implemented in the R-package

'geiger' (40; indicated as pAN in the manuscript). We tested whether the presence or

absence of infanticide explains variation in quantitative traits using phylogenetic

generalized least squares regressions as implemented in the R-package 'CAPER' (41;

indicated in the manuscript by listing the lambda-, t-, and p-value of the model) and

examined whether changes in the traits most likely co-occur on the same branches by

calculating phylogenetic independent contrasts using functions of the R-package 'ape'. To

examine whether variation in continuous traits explained the distribution of infanticide

across species we ran regression models in the R-package 'MCMCglmm' (42) that corrected

for phylogenetic relatedness (indicated as pMCMC in the manuscript), using a fixed prior

(43). The significance of factors in explaining variation in the dependent trait was assessed

by the p-values (43). In addition to their presentation in the main manuscript, we also list all

statistical results in Supplementary Table 2.

Both the phylogenetic generalized least squares regression and the MCMCglmm

method estimate the extent of the phylogenetic signal, and thereby can correct for

phylogeny to the appropriate degree (including the possibility of no phylogenetic signal).

There are two traits, longevity and litter size, for which Wilcoxon tests returned a

significant difference between species with and without infanticide that were not supported

in analyses that controlled for phylogeny. We discuss these in the supplementary results

below. In addition, to control for the possibility that some effects identified across all

mammals might differ from patterns occurring within particular lineages of mammals, we

repeated all analyses including only the 90 primate species in our sample. The significance

of all the correlations reported are the same using the main dataset and the restricted,
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primate-specific dataset (see Supplementary Table 3). However, when only including

primate species, we do not have sufficient power to investigate the evolutionary sequence

of changes in group sex ratio and testis size in relation to transitions towards presence or

absence of male infanticide. 

In order to decipher causal associations between two traits that could be coded as

binary (absence versus presence) we compared inference models in Bayestraits Discrete

(44, 45). In Discrete, we compared the evolution of male infanticide against the evolution

of each type of social organization (solitary, socially monogamous, harem, multi-female

multi-male group) in separate models. We first checked for each association whether

models that assume a dependent evolution between male infanticide and a particular type of

social organization were better supported compared to models that assume an independent

evolution of the traits. If the inference suggested a dependent evolution, we ran further

models to investigate the potential directionality of the association: first, we tested whether

models in which transitions in social organization were constrained to occur at identical

rate in both the presence and the absence of male infanticide were less supported (which

would indicate that transitions in social organization might depend on the presence of male

infanticide); second, we assessed whether models in which transitions in male infanticide

were constrained to occur at equal rates independent of the social organization were less

supported (which would indicate that the evolution of male infanticide depends on a

particular type of social organization). We assessed significance between dependent and

independent models by comparing the likelihood ratio statistic against a chi-squared

distribution with four degrees of freedom (45); unconstrained models were considered to

explain the data significantly better if the likelihood ratio statistic exceeded a chi-squared

distribution with one degree of freedom.

To investigate causal relationships between male infanticide and continuous traits

(testis size relative to body size and group sex ratio) we applied flexible Ornstein-

Uhlenbeck models of trait diversification (24). Ornstein-Uhlenbeck models assume that a

trait is under stabilizing selection toward a single or multiple adaptive optima. Specifically,

we predicted that models that assume that relative testis size and group sex ratio evolve
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towards different values in lineages in which male infanticide is present compared to absent

are statistically better supported than models that assume that relative testis size and group

sex ratio evolve independently of the presence or absence of male infanticide. We

performed the Ornstein-Uhlenbeck model reconstructions using functions of the R-package

'OUwie' (46). We first reconstructed the evolution of male infanticide. Next, we assessed

two possible ways in which the presence of male infanticide could influence either relative

testis size or group sex ratios: first, the presence of infanticide could speed up or slow down

the rate of change, but average values of testis size and sex ratio are about the same;

second, while the rate of change is the same, the presence of male infanticide could be

associated with a different peak value of testis size or sex ratio. Peak values, in comparison

to averages, take into account the possibility that the value might only have been reached

once male infanticide has been present for a sufficient amount of evolutionary time. Any

association that shows that peak values of either testis size or group sex ratio differ between

lineages in which male infanticide is either present or absent could however also be the

consequence of the reversed directionality: male infanticide evolves in lineages in which

either testis size or group sex ratio have already reached extreme values. To differentiate the

direction of causality in such cases, we performed two further sets of analyses. First, we

compared the estimated peak values to the observed average values for extant species

which either do or do not show male infanticide. If infanticide evolves only when the value

of a given trait is already high (or low) but does not subsequently influence the evolution of

this trait, the average value is expected to be similar to the peak value, because infanticide

evolves when the condition matches. If, in contrast, infanticide does influence the evolution

of the trait, then the peak value should be more extreme than the average value observed in

extant species, because these likely include a number of species where infanticide has only

evolved recently and where the trait has not yet reached its peak value. Second, we checked

whether directional selection favouring a different value of the trait had already started

before infanticide evolved. For these analyses, we included the branches just before the

nodes at which infanticide most likely first evolved, in lineages associated with the

presence of male infanticide. If the presence of male infanticide leads to a shift in the peak
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value, the inclusion of these additional branches should decrease or obscure any signal. If,

alternatively, male infanticide only evolves in those lineages characterized by an extreme

trait value, the inclusion of these additional branches should increase the strength of the

signal. We report the results below.

Supplementary results

Inference of non-phylogenetic model differs from that of phylogenetic model

For longevity and litter-size, Wilcoxon-tests of the raw species values indicate a

difference between species in which male infanticide is present as compared to absent. This

difference does not hold in analyses controlling for phylogenetic relatedness. While

including phylogenetic information could have introduced a bias if longevity and litter-size

where to evolve in a more complex way than approximated by the shared co-ancestry

between species, this scenario is unlikely because these two life-history traits generally

show a strong phylogenetic signal. Instead, it appears that the association between male

infanticide and longevity/litter-size is indirect, mediated by another trait that is

approximated by the phylogenetic component and better explains the variance in

longevity/litter-size. The factor mediating the relationship between male infanticide and

longevity/litter-size is most likely group-living, which has a significant phylogenetic signal.

This interpretation is supported by non-phylogenetic multivariate analyses which show that

the presence of male infanticide no longer predicts variation in longevity/litter-size across

species when controlling for the social organization (see Supplementary Table 2).

Analyses including only the primate species in our sample

The significance of all the correlations we report is the same when including only

primate species in the analyses (90 of the 260 species are primates; see Supplementary

Table 3).  However, we do not have sufficient power with the more limited sample of

species to investigate the evolutionary sequence of change of group sex ratio and testis size
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in relation to transitions in male infanticide. Here, the AIC values of models assuming that

species with male infanticide are associated with different values of group sex ratio and

testis size compared to species in which infanticide is absent are within 1.5 of the AIC

values of models assuming similar values. In addition, the multivariate analyses suggest

that, in primates, annual breeding and postpartum oestrus is closely linked, and postpartum

oestrus is a better predictor of male infanticide than is annual breeding.

Results of the Ornstein-Uhlenbeck model inferences

For both sex ratio and testis size, the presence of infanticide seems to be associated

with different peak values, but not with different rates of evolution (in both cases, the

likelihoods of these best supported models differ by >3 from the likelihoods of the next

models assuming different peak values and different rates, and by >5 from the likelihood of

the best supported models assuming equal peak values). These findings match the

regression analyses comparing changes in the values of the traits. To disentangle causality,

we compared peak values to average values among extant species and investigated whether

changes in either sex ratio or testis size most likely originated before or after the transition

towards male infanticide.

In contemporary species with male infanticide, the average group sex ratio is 1 male

per 2.5 females, whereas it is 1 male per 1.3 females in species without infanticide; these

values do not differ from peak values (1 male per 2.4 females in species with infanticide; 1

male per 1.6 females in species without infanticide). In addition, the strength of the

association between male infanticide and group sex ratio increased when we included

additional branches located immediately before the evolution of male infanticide, as shown

by increases in the likelihoods of models supporting two different peak values, relative to

models supporting similar peak values. The peak value of group sex-ratio changed to 1

male per 2.8 females in lineages with infanticide, and to 1 male per 1.2 females in lineages

without infanticide.

In contemporary species with male infanticide, average relative testis size is 0.20

(indicative of relatively large testes for a given body size), whereas it is -0.02 in species
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without infanticide; the peak value for species with infanticide appears much higher (0.48),

whereas it is identical to the average relative testis size (-0.03) for species without

infanticide, suggesting that the evolution of infanticide induces changes in testis size. In

addition, the association between relative testis size and male infanticide disappeared when

we included additional branches located immediately before transitions to male infanticide,

confirming that changes in testis size follow, rather than precede, transitions to male

infanticide: in this case the best supported model suggested that peak values for testis size

were identical in lineages with or without infanticide.

These results suggest that a male-biased sex ratio is a cause for the evolution of

infanticide, whereas testis size increases as a consequence of infanticide.
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Credit for animal drawings used in Figure 1

All drawings were downloaded from PhyloPic: http://phylopic.org
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Common name listed in figure (taxon identifier for picture on PhyloPic): Author

Starting from top, clockwise:

Old World primate (Papio): Uncredited

Hare (Leporidae): Sarah Werning

Squirrel (Sciuridae): Catherine Yasuda

Marmot (Marmota monax): Michael Keesey

Mice (Muridae): Madeleine Price Ball

Marsupial (Marsupialia): Sarah Werning

Bat (Chiroptera): Michael Keesey

Mongoose (Herpestoidae): Michael Keesey

Felids (Panthera): Sarah Werning

Canids (Canidae): Michael Keesey

Bear (Ursus): Steven Traver

Seal & sealions (Pinnipedia): Steven Traver

Marten (Meles): Uncredited

Ungulate (Cervus): Steven Traver

Lemur (Daubentonia): Uncredited

Great ape (Gorilla): Michael Keesey

New World primate (Cebus): Sarah Werning
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Supplementary Table 1: Inferences from Bayestraits' Discrete models investigating correlated evolution between male infanticide and social

organization

Phylogenetic reconstructions that consider the evolution of male infanticide and social organization suggest that transitions to male infanticide depend

on a social system involving bisexual groups (harem or multimale-multifemale). While male infanticide appears to evolve independently from social

monogamy (and vice versa), transitions to male infanticide appear significantly more likely in lineages with bisexual groups. Changes in social

organization do however not appear to be a consequence of male infanticide, as transitions to group living are equally likely when male infanticide is

present or absent. The higher support for a dependent model in the case of group-living species appears to derive from this trait being evolutionarily

stable, with transitions to this state much higher than losses of this state (regardless of the presence of infanticide). The values of delta log-likelihood

represent the difference between the likelihood of the model presented and the likelihood of the best supported model (in all cases dependent and

unconstrained), and values in bold with stars indicate models that are significantly less supported compared to this baseline model (based on a chi-

square test comparison correcting for the difference in the number of parameters of each model).



Supplementary Table 2: Summary of the results of the statistical analyses including all species.

The table presents for the non-phylogenetic Wilcoxon tests the test value W and significance value p, for phylogenetic Anova (PhyloAnova) the

significance value p, for phylogenetic generalized least squares regression (PGLS) the most likely value for the transformation of the branch lengths

lambda, whether this lambda value is significantly different from a value that reflects no phylogenetic signal (p lambda = 0) or a value that reflects that

change occurs consistently over evolutionary time (p lambda = 1), for the MCMCglmm regression model the significance value p, and for multivariate

regression models in MCMCglmm the significance values p for the two traits analysed simultaneously in one row.



Supplementary Table 3: Summary of the results of the statistical analyses including only primates.

The table presents for the non-phylogenetic Wilcoxon tests the test value W and significance value p, for phylogenetic Anova (PhyloAnova) the

significance value p, for phylogenetic generalized least squares regression (PGLS) the most likely value for the transformation of the branch lengths

lambda, whether this lambda value is significantly different from a value that reflects no phylogenetic signal (p lambda = 0) or a value that reflects that

change occurs consistently over evolutionary time (p lambda = 1), for the MCMCglmm regression model the significance value p, and for multivariate

regression models in MCMCglmm the significance values p for the two traits analysed simultaneously in one row.
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Supplementary Table 4: Data on infanticide occurrence

Species MaleInfanticide Reference

Acinonyx_jubatus No 47

Acrobates_pygmaeus No 48

Aepyceros_melampus No 49

Aethomys_namaquensis Yes 50

Ailurus_fulgens No 51

Alces_alces No 52

Alouatta_caraya Yes 4

Alouatta_guariba Yes 53

Alouatta_palliata Yes 4

Alouatta_pigra Yes 54, 55

Alouatta_seniculus Yes 4

Antechinus_stuartii No 56

Antechinus_swainsonii No 65

Antilocapra_americana No 16, 57, 58

Antrozous_pallidus No 59

Aotus_azarae No 60, 61

Arctocephalus_forsteri No 62

Arctocephalus_galapagoensis No 63

Arctocephalus_gazella No 64, 65

Arctocephalus_pusillus No 66

Arctocephalus_tropicalis No 67

Ateles_belzebuth Yes 68

Ateles_geoffroyi Yes 68, 69

Ateles_paniscus No 70, 71
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Avahi_laniger No 72

Bison_bison No 16, 73, 74

Brachyteles_arachnoides No 75

Brachyteles_hypoxanthus No 76

Bunopithecus_hoolock Yes 77, 79

Callimico_goeldii No 79

Callithrix_flaviceps No 80, 81

Callithrix_jacchus No 81

Callorhinus_ursinus No 4

Canis_dingo No 82

Canis_latrans No 4, 16

Canis_lupus No 16, 83

Canis_mesomelas No 16, 84

Canis_simensis No 16, 85

Capreolus_capreolus No 86

Cavia_aperea No 4, 87

Cavia_intermedia No 4

Cavia_magna No 4, 88

Cavia_porcellus No 4, 89

Cebus_apella Yes 90

Cebus_capucinus Yes 91

Cebus_nigritus Yes 92

Cebus_olivaceus Yes 4

Cercocebus_atys Yes 4, 16

Cercocebus_galeritus Yes 16

Cercocebus_torquatus Yes 16, 93, 94

Cercopithecus_albogularis No 95
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Cercopithecus_ascanius Yes 4

Cercopithecus_campbelli Yes 96

Cercopithecus_mitis Yes 4

Cervus_elaphus No 97

Chalinolobus_gouldii No 98

Cheirogaleus_medius No 99, 100

Chiropotes_albinasus No 101

Chiropotes_satanas No 101

Chlorocebus_aethiops Yes 102, 103

Colobus_guereza Yes 4

Colobus_vellerosus Yes 12

Connochaetes_taurinus No 104

Crocidura_russula No 105

Crocuta_crocuta No 106

Cuon_alpinus No 107

Cynictis_penicillata No 108

Cynomys_gunnisoni No 7

Cynomys_leucurus No 109

Cynomys_ludovicianus Yes 7

Cynomys_parvidens Yes 110

Cynopterus_brachyotis Yes 111

Cystophora_cristata No 112

Dasyurus_hallucatus No 113

Dasyurus_viverrinus No 113

Diceros_bicornis No 114

Dicrostonyx_groenlandicus Yes 7

Didelphis_virginiana No 115
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Dolichotis_patagonum No 116

Enhydra_lutris Yes 117

Eptesicus_fuscus No 118

Equus_caballus Yes 16

Equus_zebra Yes 119, 120

Erythrocebus_patas Yes 121

Eubalaena_australis No 122

Eulemur_fulvus Yes 123

Eulemur_macaco Yes 123, 124

Eumetopias_jubatus No 125

Felis_catus Yes 126

Galea_monasteriensis No 127

Gazella_dorcas No 128

Giraffa_camelopardalis No 129, 130

Gorilla_beringei Yes 4

Gorilla_gorilla Yes 131

Halichoerus_grypus Yes 132

Hapalemur_griseus No 133

Helogale_parvula No 134, 135

Herpestes_sanguineus No 136, 137

Heterocephalus_glaber No 138

Hippopotamus_amphibius Yes 139

Hippotragus_equinus No 140

Hyaena_brunnea No 141

Hyaena_hyaena No 142, 143

Hylobates_lar Yes 14

Lagothrix_lagotricha No 144, 145
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Lasiopodomys_brandtii Yes 7

Lemur_catta Yes 123, 146

Leontopithecus_rosalia No 147

Leopardus_pardalis Yes 47

Lepilemur_edwardsi Yes 148

Leptonychotes_weddellii No 149

Lepus_americanus No 150

Lophocebus_albigena No 151

Lophostoma_silvicolum Yes 152

Loris_lydekkerianus No 153, 154

Loris_tardigradus No 153, 155

Loxodonta_africana No 156, 157

Lycaon_pictus No 158

Lynx_canadensis Yes 47

Lynx_pardinus Yes 159

Macaca_arctoides Yes 160

Macaca_fascicularis Yes 4

Macaca_mulatta Yes 161

Macaca_nemestrina Yes 16

Macaca_nigra Yes 16

Macaca_radiata Yes 4

Macaca_silenus Yes 16

Macaca_sinica Yes 162

Macaca_sylvanus Yes 4

Macaca_thibetana Yes 163

Macaca_tonkeana No 164

Macropus_giganteus No 165
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Madoqua_kirkii No 166

Mandrillus_sphinx Yes 167

Marmota_caligata Yes 110

Marmota_caudata Yes 7

Marmota_flaviventris No 7

Marmota_marmota Yes 4

Marmota_monax No 168

Martes_americana No 169

Martes_pennanti No 169

Megaderma_lyra No 152

Meles_meles No 4

Mellivora_capensis Yes 171

Mephitis_mephitis Yes 172

Microcebus_murinus No 173, 174

Microtus_arvalis Yes 175

Microtus_canicaudus No 7

Microtus_pennsylvanicus Yes 110

Microtus_townsendii No 7

Mirounga_angustirostris Yes 176, 177

Mirounga_leonina Yes 178

Monachus_schauinslandi Yes 179, 180

Mungos_mungo No 181

Mustela_erminea No 182

Mustela_frenata Yes 16

Myodes_glareolus Yes 110

Myotis_myotis No 183

Nasalis_larvatus Yes 184
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Nasua_nasua Yes 4

Neophoca_cinerea Yes 185

Neotoma_albigula No 186

Neotoma_cinerea No 187

Neotoma_lepida No 7

Neovison_vison Yes 188

Nyctereutes_procyonoides No 189-191

Ochotona_curzoniae No 192

Octodon_degus No 193

Odobenus_rosmarus No 194

Odocoileus_virginianus No 195

Onychomys_torridus No 196

Oreamnos_americanus No 197

Oryctolagus_cuniculus No 198

Oryx_leucoryx Yes 199

Otaria_byronia Yes 200

Otocyon_megalotis No 201

Ovibos_moschatus No 202

Ovis_aries No 197

Ovis_canadensis No 203

Ozotoceros_bezoarticus No 204, 205

Pan_paniscus No 206

Pan_troglodytes Yes 207, 208

Panthera_leo Yes 209

Panthera_onca Yes 210

Panthera_pardus Yes 47

Panthera_tigris Yes 47

19



Papio_anubis Yes 4

Papio_cynocephalus Yes 211

Papio_hamadryas Yes 211

Papio_ursinus Yes 4, 213

Paraxerus_cepapi Yes 7

Peromyscus_leucopus Yes 7

Peromyscus_maniculatus Yes 7

Peromyscus_polionotus No 214, 215

Phacochoerus_aethiopicus No 216

Phascogale_tapoatafa No 217

Phoca_groenlandica No 194

Phoca_sibirica No 218

Phoca_vitulina No 194

Phocarctos_hookeri Yes 219, 220

Phodopus_sungorus Yes 7

Phyllostomus_hastatus No 221

Pithecia_pithecia No 222

Pongo_abelii No 223

Pongo_pygmaeus No 223

Potos_flavus No 224

Presbytis_potenziani No 71

Presbytis_thomasi Yes 225

Procolobus_badius Yes 226

Propithecus_diadema Yes 227, 228

Propithecus_edwardsi Yes 4, 229

Propithecus_verreauxi Yes 16

Proteles_cristata No 230
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Pteronura_brasiliensis Yes 231

Pteropus_hypomelanus No 232

Pteropus_vampyrus No 232

Puma_concolor Yes 47

Pygathrix_bieti Yes 233

Pygathrix_roxellana Yes 234, 235

Rangifer_tarandus No 197

Rhabdomys_pumilio Yes 236

Rhinoceros_unicornis Yes 237

Rhynchocyon_chrysopygus No 238

Saguinus_fuscicollis No 239

Saguinus_mystax No 240

Saguinus_oedipus No 241

Saimiri_oerstedii No 242

Saimiri_sciureus Yes 243

Sciurus_carolinensis Yes 244

Semnopithecus_entellus Yes 245

Speothos_venaticus No 246

Spermophilus_beecheyi No 4

Spermophilus_beldingi Yes 110

Spermophilus_columbianus Yes 7

Spermophilus_franklinii Yes 7

Spermophilus_parryii Yes 7

Spermophilus_richardsonii No 7

Spermophilus_townsendii Yes 7

Spermophilus_tridecemlineatus Yes 7

Suricata_suricatta No 247
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Sus_scrofa No 248

Symphalangus_syndactylus Yes 249

Tadarida_brasiliensis No 111, 152

Tamias_striatus No 250

Theropithecus_gelada Yes 4

Trachypithecus_cristatus Yes 251

Trachypithecus_poliocephalus Yes 252

Trachypithecus_vetulus Yes 4

Tursiops_truncatus Yes 253

Urocyon_cinereoargenteus No 254

Ursus_americanus Yes 4, 255

Ursus_arctos Yes 4, 256

Ursus_maritimus Yes 257

Varecia_variegata Yes 258

Vulpes_lagopus Yes 259

Vulpes_velox No 260, 261

Vulpes_vulpes No 209

Vulpes_zerda No 262

Xerus_inauris No 263

Zalophus_californianus No 194
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