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Many long-lived plant and animal species have nondiscrete overlapping generations. Although numerous models have been

developed to predict the effective sizes (Ne) of populations with overlapping generations, they are extremely difficult to apply

to natural populations because of the large array of unknown and elusive life-table parameters involved. Unfortunately, little

work has been done to estimate the Ne of populations with overlapping generations from marker data, in sharp contrast to the

situation of populations with discrete generations for which quite a few estimators are available. In this study, we propose an

estimator (EPA, estimator by parentage assignments) of the current Ne of populations with overlapping generations, using the

sex, age, and multilocus genotype information of a single sample of individuals taken at random from the population. Simulations

show that EPA provides unbiased and accurate estimates of Ne under realistic sampling and genotyping effort. Additionally, it

yields estimates of other interesting parameters such as generation interval, the variances and covariances of lifetime family size,

effective number of breeders of each age class, and life-table variables. Data from wild populations of baboons and hihi (stitchbird)

were analyzed by EPA to demonstrate the use of the estimator in practical sampling and genotyping situations.
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Inbreeding and genetic drift are two closely related yet distinc-

tive stochastic processes characterizing populations of finite sizes.

They act and interact to cause the erosion of neutral genetic vari-

ation (e.g., Frankham et al. 2003), the decline in fitness, and the

increase in extinction risk due to the excessive accumulation and

expression of deleterious mutations (e.g., Lynch et al. 1995), and

the loss of adaptive evolution due to reduced efficacy of positive

selection (Crow and Kimura 1970). In real populations, many fac-

tors (such as population size, sex ratio, variance in fecundity and

viability, and mating system) affect the strength of inbreeding and

genetic drift processes, but can be conveniently summarized into

a single parameter, the effective population size (Wright 1931,

1938). Using this parameter, one cannot only explain the current

levels of neutral genetic variation and fitness of a population, but

also predict their evolution in the future.

Because of the importance of effective size (Ne) in both

population genetics theory and applied disciplines such as evo-

lutionary biology, ecology and conservation, tremendous efforts

have been made to predict the parameter from demographic mod-

els (reviewed by Caballero 1994; Wang and Caballero 1999) and

to estimate the parameter from genetic marker data (reviewed by

Schwartz et al. 1999; Beaumont 2003; Wang 2005). In the lat-

ter case, a number of methods have been proposed and applied

based on the amount and pattern of genetic variation observed at
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a number of marker loci in one or more samples of individuals. In

particular, the heterozygote excess method (Pudovkin et al. 1996;

Luikart and Cornuet 1999), linkage disequilibrium method (e.g.,

Hill 1981; Waples 2006), temporal method (e.g., Nei and Tajima

1981), and sibship assignment method (Wang 2009) have been

developed in recent years to estimate the current or short-term

effective size.

Most methods available for estimating Ne assume a popula-

tion with discrete nonoverlapping generations. The assumption,

however, is violated in many long-lived plant and animal species

in which individuals can reproduce multiple times in their lifetime

and individuals of different life stages coexist to breed. Realizing

the importance of overlapping generations, theoretical population

geneticists developed various demographic models to predict the

Ne of populations with overlapping generations (Moran 1962;

Kimura and Crow 1963; Nei and Imaizumi 1966; Felsenstein

1971; Crow and Kimura 1972; Hill 1972; Johnson 1977; Choy

and Weir 1978; Emigh and Pollak 1979; Hill 1979; Pollak 1990;

Charlesworth 2001). These models have greatly advanced our

understanding of inbreeding and genetic drift in the case of over-

lapping generations, but are difficult to apply to natural popu-

lations because of the lack of information about the large array

of life-history parameters (such as age- and sex-specific repro-

duction and survival rates) involved in the models. There is still,

therefore, an urgent need to develop practical methods that can

use genetic marker data to estimate the Ne of populations with

overlapping generations. Unfortunately, however, little work has

been done (but see Jorde and Ryman 1995; Waples and Yokota

2007) in this regard.

For populations with discrete generations, the most widely

applied method for estimating Ne has been the temporal method

(Krimbas and Tsakas 1971; Nei and Tajima 1981; Waples 1989),

so called because it measures and uses the changes in allele fre-

quencies between temporally spaced samples taken from the same

population. The method should apply approximately to popula-

tions with overlapping generations when the time interval be-

tween samples is much longer than the generation interval (Nei

and Tajima 1981), as verified by simulations (Waples and Yokota

2007). This is understandable because with a long sampling inter-

val the observed changes in sample allele frequencies would come

mainly from genetic drift rather than the internal age-sex struc-

tures and small sizes of the samples. However, a direct application

of the temporal method to populations with overlapping genera-

tions has met several difficulties. First, species with overlapping

generations generally have a long individual life expectancy and

the minimum period of a single generation required for the tem-

poral method may well exceed the life span of a typical research

project. Second, a much longer sampling interval is required for

populations with overlapping generations than those with discrete

generations to reach the same accuracy of estimation under sim-

ilar conditions (e.g., comparable values of Ne and sample size),

because the heterogeneity of the age-structured samples incurs

noises additional to those caused by small sample sizes, as shown

by simulations (Jorde and Ryman 1995; Waples and Yokota 2007).

Indeed the allele frequency difference among age classes, such as

genetic drift, is a property of the population determined by its

life-table, so its effect on Ne estimation cannot be eliminated or

reduced by increasing sample size or the number of markers.

Third, how to estimate allele frequencies from the heterogeneous

samples (i.e., whether to weight individuals by their reproductive

values or not) is a difficult problem but proves to be critical in

determining the accuracy of Ne estimates (Waples and Yokota

2007).

Jorde and Ryman (1995) modified the temporal method to

apply it to populations with overlapping generations. They used

the observed allele frequency shifts between consecutive cohorts

to measure genetic drift, so that the weighting problem men-

tioned above is avoided because the cohort-stratified samples are

homogenous. They took the effect of age structure into account

by a correction constant (C, in their notation), which is a function

of the age-specific reproduction and survival rates. This method is

shown to be almost unbiased (Jorde and Ryman 1995; Waples and

Yokota 2007) when 5000 markers are used in the estimation in

simulations. However, consecutive cohorts are expected to have

very small differences in allele frequency even for a small popu-

lation, because they share a substantial proportion of their genes

coming from the same set of parents. Therefore, many loci (in

the thousands) are necessary to measure genetic drift accurately.

Furthermore, the calculation of C requires detailed life-table in-

formation such as the age-specific reproduction and survival rates,

which are usually numerous and difficult to obtain from natural

populations. In fact, the modified methods need such extensive in-

formation that it actually allows only one parameter in the model

of overlapping generations, the absolute size of a single age class,

to be unknown.

In this study, we propose a new method to estimate the ef-

fective size and the related causal parameters (such as generation

interval and variance of lifetime family sizes) for populations

with overlapping generations. The method uses the multilocus

genotypes of a single sample of individuals taken at random from

the population to assign parentage among sampled individuals.

It then estimates Ne and its causal parameters from the inferred

parentage by a likelihood approach. The only information addi-

tional to genotypes required by the method is the age and sex of

each sampled individual, which is relatively easy to obtain for

many species. We will first briefly describe the genetic model of

populations with overlapping generations on which our method

is based. We then propose a likelihood estimator of the param-

eters of the model based on parentage assignments between age

classes in a sample of individuals. Simulations are conducted to
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investigate the performance of the estimator in estimating Ne and

its causal parameters. The simulation results are helpful in under-

standing the behavior of the estimator and the factors affecting its

accuracy, providing useful information for practical applications.

Finally, we analyze two empirical datasets to demonstrate the use

of the proposed estimator in practical situations.

A Genetic Model of Populations
with Overlapping Generations
Among the various models of inbreeding and genetic drift for

populations with overlapping generations (e.g., Felsenstein 1971;

Hill 1972; Johnson 1977), we focus on the inbreeding model of a

dioecious diploid species proposed by Johnson (1977), on which

our estimator of Ne is based.

The model assumes a population consisting of N1 diploid

males and N2 diploid females distributed in n1 and n2 age classes,

respectively. Age classes can be defined by years or any other

time units. For convenience, we use year as the time unit so

that individuals in age class i are i-year-olds for both males and

females. The number of individuals in age class i and sex s (s =
1, 2; 1 ≤ i ≤ ns) is assumed to be fixed at Ni ,s in any year, so that∑ns

i=1 Ni,s = Ns . Each year N1,s 1-year-olds enter the population

whereas death claims all Nns ,s ns-year-olds and a random sample

of Ni,s − Ni+1,s (1 ≤ i ≤ ns − 1) i-year-olds, for each sex s = 1,

2. The probability of survival to age i is then li,s = Ni,s/N1,s for

i = 1 ∼ ns, and the age-specific survival rate is then Ni+1,s/Ni,s =
li+1,s/ li,s and 0 for i < ns and i = ns, respectively, of sex s.

Reproduction is assumed to occur at random within and be-

tween age classes. Between age classes, sampling of gametes is

accommodated by a set of parameters prs ,i, where prs ,i is the

probability that a random gamete contributing to the conception

of a newborn individual of sex r (r = 1, 2) in any year came from

the ith (1 ≤ i ≤ ns) age class of parents of sex s (s = 1, 2) in the

previous year. Because half of the genes of an individual came

from its mother and half from its father, we have

n1∑
i=1

pr1,i =
n2∑

i=1

pr2,i = 1

2
, r = 1, 2.

Within an age class, each individual is equally likely to

contribute gametes to the next generation. Parameters prs ,i de-

termine the parental age distribution of newborns, and can be

estimated from age-specific reproduction rates and age class

sizes in practice. If an i-year-old parent of sex s contributes

on average mrs,i newborns of sex r, then prs ,i is calculated as

prs,i = 1
2 mrs,i Ni,s/

∑ns
i=1 mrs,i Ni,s .

For dioecious species, there are four pathways of genes: fa-

ther to son, father to daughter, mother to son, and mother to

daughter. The average lengths of the four pathways are

L11 = 2
n1∑

i=1

q11,i , L21 = 2
n1∑

i=1

q21,i ,

L12 = 2
n2∑

i=1

q12,i , L22 = 2
n2∑

i=1

q22,i ,

(1)

where Lrs is the average age of parents of sex s when their offspring

of sex r are born, and qrs,i = ∑ns
j=i prs, j is the reproductive value

of age class i (1 ≤ i ≤ ns) and sex s for producing offspring of

sex r (r, s = 1, 2). Generation interval is the average of the lengths

of the four pathways

L = 1

4
(L11 + L21 + L12 + L22) = 1

2

n1∑
i=1

q1,i + 1

2

n2∑
i=1

q2,i , (2)

where qs,i = q1s,i + q2s,i for s = 1, 2 and 1 ≤ i ≤ ns . Gener-

ation interval can also be written as L = 1
2 (L1 + L2), where

Ls = ∑ns
i=1 qs,i is the paternal (s = 1) or maternal (s = 2) gener-

ation interval.

Under the above inbreeding model, Johnson (1977) and

Emigh and Pollak (1979) derived the equation for effective size

1

Ne
= 1

4L

2∑
s=1

[
1

N1,s
+

ns∑
i=2

q2
s,i

(
1

Ni,s
− 1

Ni−1,s

)]
, (3)

and the variances and covariances in lifetime family sizes

σ2
sr = N1,r

N1,s
+ 4

N 2
1,r

N1,s

ns∑
i=2

q2
rs,i

(
1

Ni,s
− 1

Ni−1,s

)
, r, s = 1, 2

σs1,s2 = 4N1,3−s

ns∑
i=2

q1s,i q2s,i

(
1

Ni,s
− 1

Ni−1,s

)
, s = 1, 2. (4)

In (4), σ2
sr is the variance of the lifetime number of offspring

of sex r per parent of sex s, and σs1,s2 is the covariance between

the lifetime numbers of sons and daughters per parent of sex s

(r,s = 1, 2).

An Estimator of Ne for Populations
with Overlapping Generations
The parameters (e.g., Ni,s, qs,i ) in (2–4) are difficult to acquire

from a natural population without detailed long-term pedigree

records. We propose to use marker-based parentage assignments

to estimate these parameters and thus L and Ne.

We assume that a sample of individuals is taken at random

(with respect to kinship) from the focal population that follows

the assumptions of the genetic model described above. It is not

necessary for sampling to be at random between sexes or between

age classes, for example, one particular age class (say, 1-year-old

males) may be sampled at a much higher or lower proportion than

others. Each sampled individual is sexed, aged, and genotyped at

a number of marker loci. Using methods already available (e.g.,

Marshall et al. 1998; Wang and Santure 2009), the genotype,
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sex, and age information of sampled individuals can be used for

parentage assignments, which are then employed by the estimator

below for estimating the Ne of the population.

Let us consider the parameters for males. For clarity in this

section, all subscripts denoting males are omitted so that, for

example, n, pr,i and Ni refer to n1, pr1,i and Ni ,1, respectively.

Let us denote the observed number of i-year-old males who are

included in the sample as xi, and the unknown parameter of the

sampling proportion of this age class as Si. Given the parameter

set S = {S1, S2, . . . , Sn} and N = {N1, N2, . . . , Nn}, the count

data, x = {x1, . . . , xn}, follow the multivariate hypergeometric

distribution,

Pr(x | S, N) =

(
n∑

i=1

Ni Si

)
!

(
n∑

i=1

xi

)
!

(
n∑

i=1

Ni Si −
n∑

i=1

xi

)
!

×
n∏

i=1

(Ni Si )!

xi !(Ni Si − xi )!
. (5)

Assuming that a newborn individual is equally probable to

be either sex (i.e., unbiased primary sex ratio), we have p1,i ≡
p2,i for age class 1 ≤ i ≤ n. This assumption is plausible and

should be valid for many natural populations. Let us denote the

observed numbers of male and female j-year-olds whose paternity

is unassigned and assigned to males of age i as y j,n+1 and yj ,i,

respectively, where 0 ≤ j ≤ i − 1. The total number of j-year-

olds in the sample is then Y j = ∑n+1
i= j+1 y j,i . The vector y j =

{y j, j+1, y j, j+2, . . . , y j,n+1} follows the multinomial distribution

with parameters Yj and {b j, j+1, b j, j+2, . . . , b j,n+1}, where b j,i is

the probability that the father of a j-year-old drawn at random from

the population is found in age class i ( j + 1 ≤ i ≤ n) or not found

(i = n + 1) in the sample. b j,i can be calculated from the sampling

proportion (Si), size (Ni), and reproductive contribution (p1,i or

p2,i ) of male age class i, b j,i = 2p1,i− j Si Ni/Ni− j for j + 1 ≤
i ≤ n and b j,n+1 = 1 − ∑n

i= j+1 b j,i . The overall probability of

the observed paternity assignments y = {y0, y1, . . . , yn−1}, given

parameter sets S, N, p = {p1,1, p1,2, . . . , p1,n}, is

Pr(y | S, N, p) =
n−1∏
j=0

Y j !
n+1∏

i= j+1

b
y j,i

j,i

y j,i !
. (6)

Let us denote the number of individuals of any sex and age

whose paternity is assigned to male k (1 ≤ k ≤ xi ) of age i (1 ≤
i ≤ n) as zk,i, and the total number of individuals whose paternity

is assigned to males of age i as Zi = ∑xi
k=1 zk,i . Approximately

zk,i follows a Poisson distribution with parameter μi = Zi/(Ni Si ).

The probability of the observed counts z = {z1, z2, . . . , zn} with

zi = {z1,i , z2,i , . . . , zxi ,i } is

Pr(z | S, N) =
n∏

i=1

xi∏
k=1

∞∏
l=0

μl
i

l!eμi
. (7)

Maximum likelihood estimates of parameters N and p as

well as S can be obtained by maximizing the product of (5–7),

with further constraints of Ni+1 ≤ Ni for 1 ≤ i ≤ n − 1. When S
is known in the data, only N and p are estimated. We use Pow-

ell’s quadratic convergence method (Press et al. 1996) to solve

this constrained maximization problem. Each dataset is analyzed

with 1000 replicates, each with a different set of starting values

for the parameters and searching directions. Among these repli-

cates, the solution with the maximal likelihood is returned as the

best estimate. The starting values for parameters p and S and for

searching directions are determined at random for each replicate

whereas the starting value for Ni (1 ≤ i ≤ n) in replicate k is set as

10k/200u1−k/1000 − i , where u is the maximal number of sampled

individuals in an age class. The value of Ni is constrained to the

range of [1, 105] whereas that of 2pi or Si is constrained to the

range of [0, 1]. Numerical examples show that replicates with dif-

ferent starting points and searching directions are not guaranteed

to converge to the same solution with the same likelihood, espe-

cially when the population is not intensively sampled for all age

classes. However, 1000 replicates seem to be sufficient, as more

replicates do not change the results of many simulated datasets

appreciably.

With the same procedure, we can obtain maximum likelihood

estimates of parameters for females, which are Ni ,2 and pr2,i for

r = 1, 2 and 1 ≤ i ≤ n2. Once we have obtained estimates for

Ni ,s and prs,i (r, s = 1, 2; 1 ≤ i ≤ ns) for both sexes, these values

can be inserted into (2–4) to yield estimates of L and Ne, as well

as the variances and covariances of lifetime family sizes for both

males and females.

Parametric bootstrapping can be used to estimate the confi-

dence intervals of Ne and L, and other parameters. We simulate a

population characterized by the estimated values of Ni ,s, and prs,i

(s = 1, 2; 1 ≤ i ≤ ns). After a sufficient number of generations

for the population to reach the steady state of inbreeding, a sample

similar to the real one is taken and used for parentage assignments

and parameter estimation. Repeating this process a large number

of times (say, 1000), we obtain a 95% confidence interval for each

of the parameters of interest.

Some Extensions to the Basic Model
The estimation procedure described above assumes the inbreed-

ing model of random births and deaths. When the assumption is

violated, such as when individuals within an age class have fertili-

ties or viabilities different in expectation, the Ni ,s value estimated

by the above procedure is just the census size of age class i of

sex s. If the effective size of age class i and sex s, Nei,s , can be
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estimated, then Ne can still be obtained by (3), replacing Ni ,s by

Nei,s . Similar to Ne, Nei,s is determined by census size Ni ,s and

the variance in reproductive contribution among the Ni ,s individ-

uals. As an example, let us consider the estimation of the effective

size of male age class i, Nei,1. The frequency with which two

randomly selected individuals of any age and sex whose paternity

is assigned to males of age i share the same father is

f̂ i,1 =

xi∑
k=1

zk,i (zk,i − 1)

Zi (Zi − 1)
, (8)

where zk,i and Zi are defined in deriving (7). With random births

and deaths as assumed in the inbreeding model, we have E( f̂ i,1) ≡
1/xi . The value of f̂ i,1 is expected to be larger (smaller) than 1/xi

when the variance of family size is larger (smaller) than that of

a Poisson distribution. Therefore, the effective size of male age

class i is estimated as

N̂ ei,1 = Ni,1

xi f̂ i,1
= Zi (Zi − 1)Ni,1

xi

xi∑
k=1

zk,i (zk,i − 1)

. (9)

When Zi ≤ 1 or no offspring are observed to share the same

father in age class i, (9) becomes undefined because the denomi-

nator is zero. In such a case, we assume a Poisson distribution of

family size so that f̂ i,1 = 1/xi and Nei,1 = Ni,1.

The parameters (Ni,s, prs,i ) obtained by the estimator using

autosomal markers can also be used to calculate the generation

intervals and effective sizes for X-linked, Y-linked, and mtDNA

loci of the same population. For X-linked loci, generation interval

is estimated by L X = 1
3 L1 + 2

3 L2 as 1/3 and 2/3 of the genes

come from males and females, respectively. The effective size is

calculated by Pollak (1990) as

1

Ne(X )
= 1

9N1,1 L X

[
1 + 2σ2

12

/
μ2

12

]
+ 1

9N1,2 L X

[
1 + σ2

22 + 2σ21,22/μ21 + σ2
21

/
μ2

21

]
,

where σ2
sr and σs1,s2 are calculated by (4), and μsr =

N1,r/N1,s(r,s = 1,2). For Y-linked and mtDNA loci, the haploid

model applies and the generation interval and effective size are

estimated by Ls and Ne = N1,s Ls/σ
2
ss (Hill 1972), respectively,

where s = 1 and 2 for Y-linked and mtDNA loci, respectively.

Simulations
We conducted simulations to check the performance of the esti-

mator, and to investigate the factors that affect the accuracy of the

estimator. For a given set of demographic parameters, Ni ,s and

prs,i (s = 1, 2; 1 ≤ i ≤ ns), the initial population is generated in

which all individuals are outbred and unrelated. The population

then evolves for Ne generations, following the genetic model de-

scribed above, to reach the steady state of inbreeding and genetic

drift. In each year during the Ne generations, reproduction is fol-

lowed by death and survival events. For reproduction, male and

female gametes that unite to form a newborn of sex r are taken

from age class i (1 ≤ i ≤ n1) in males and j (1 ≤ j ≤ n2) in fe-

males with probabilities 2pr1,i and 2pr2, j , respectively. Within an

age class, individuals are assumed to have either equal or differ-

ential fertility in expectation. Under equal fertility, a gamete from

an age class is equally probable to come from each individual

in the class. Under differential fertility, half of the newborns of

each sex are marked as high fertile (HF) and the other half as low

fertile (LF). An HF individual at any age is expected to contribute

m times the number of gametes of an LF individual of the same

age. This differential fertility model leads to a variance in family

size larger than that of the binomial distribution within any age

class, and to an even greater variance in lifetime family size.

At generation Ne + 1, a sample of individuals is taken at ran-

dom from the population, and each sampled individual is sexed,

aged, and genotyped at a number of loci. The parent—offspring

(PO) relationships among sampled individuals were either as-

sumed known, or inferred (at 95% confidence level) from the

marker, sex, and age data using the method of Marshall et al.

(1998) implemented in the computer program Colony (Wang

2004; Wang and Santure 2009). The known or inferred parent-

age is then used by estimator by parentage assignments (EPA) to

estimate the demographic parameters and thus L and Ne.

For a given set of parameters, R = 1000 replicate datasets are

simulated and analyzed. The estimation accuracy of a parameter

x is measured by the bias (B = μx − x̄ , where mean estimate

x̄ = 1
R

∑R
i=1 x̂i and μx is the parameter value), standard devi-

ation (SD =
√

1
R

∑R
i=1 x̂2

i − x̄2), and root mean squared errors

(RMSE =
√

SD2 + B2). For Ne, Nei ,s, and Ni ,s, accuracy is mea-

sured on the reciprocal of the parameter. The parameter value of

generation interval is calculated by (2). With equal fertility, the

parameter values for the variances of lifetime family sizes and Ne

are calculated by (4) and (3), respectively. With differential fertil-

ity, the parameter values for the variances of lifetime family sizes

are estimated by the average simulated values, which are then in-

serted into Hill’s (1972) equation to calculate the parameter value

of Ne.

Results
KNOWN PARENTAGE

In the best scenario, where the parentage of sampled individu-

als is known (e.g., from behavioral observations or from many

informative markers) without error, the accuracy of EPA for the

estimation of Ne is compared among different sampling intensities

and schemes. The simulation results in Table 1 verify that EPA
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Table 1. Accuracy of 1/Ne estimates from EPA when parentage is known.

Fertility Parameter Sampling Mean SD RMSE
value (103/Ne) percentage

Equal 1.486 2,2,2,2,2 1.807 2.454 2.475
4,4,4,4,4 1.771 1.216 1.249
8,8,8,8,8 1.611 0.5119 0.5269
16,16,16,16,16 1.521 0.2210 0.2237
32,32,32,32,32 1.447 0.0853 0.0939
64,64,64,64,64 1.451 0.0572 0.0671
100,100,100,100,100 1.486 0.0032 0. 0032
5,8,11,17,25 1.614 0.3874 0.4079
25,17,11,8,5 1.475 0.2934 0.2935
0,16,16,16,16 1.836 0.3444 0.4908
16,0,16,16,16 1.441 0.3190 0.3222
16,16,0,16,16 1.502 0.3177 0.3181

Different 2.148 2,2,2,2,2 1.791 2.654 2.678
4,4,4,4,4 2.276 2.221 2.225
8,8,8,8,8 2.729 1.982 2.065
16,16,16,16,16 2.608 1.212 1.295
32,32,32,32,32 2.186 0.3862 0.3874
64,64,64,64,64 2.169 0.1317 0.1333
100,100,100,100,100 2.161 0.0817 0.0825
5,8,11,17,25 2.734 2.028 2.111
25,17,11,8,5 2.547 1.108 1.177

Data were simulated with parameters n1=3, n2=4, {pr 1,1, pr 1,2, pr 1,3}={0.10, 0.25, 0.15}, {pr 2,1, pr 2,2, pr 2,3, pr 2,4}={0.10, 0.15, 0.15, 0.10}, {N0,1, N1,1,

N2,1, N3,1}={300, 200, 150, 100}, {N0,2, N1,2, N2,2, N3,2, N4,2}={300, 200, 150, 100, 50}, where r=1, 2. The sampling proportions of 0∼3 year old males

and of 0∼4 year old females are listed in column 3: the five figures thus indicate the percentage of new borns, 1-year olds, 2-year olds, 3-year olds, and

4-year olds (females only) sampled for each sex. The sex and age of the sampled individuals, as well as their parentage relationships, are assumed known.

The parameter value of L is 2.3 years. Here, we compare the estimated values with the actual parameter values of 103/Ne, where Ne and 103/Ne are 673

and 1.486 for equal expected fertility among individuals, and are 466 and 2.148 for unequal expected fertility among individuals, respectively. With equal

fertility, each individual within an age class has an equal probability of reproductive contribution. With unequal fertility, half the newborns are marked

as high fertility and the other half as low fertility, and a high fertility individual is five times more likely to contribute reproductively than a low fertility

individual of the same age class, at any age.

yields unbiased and accurate estimates of Ne when a medium-to-

large proportion of the population is sampled. As expected, the

accuracy of the estimator increases with an increasing sampling

proportion under both fertility models.

Under both the equal and differential fertility models, the es-

timator is robust to disproportional sampling among age classes

(Table 1). Old-biased sampling (sampling percentages 5, 8, 11,

17, 25 for ages 0∼4) and young-biased sampling (sampling per-

centages 25, 17, 11, 8, 5 for ages 0∼4) lead to similar accuracies,

which are also comparable to that when 8∼16% of individuals are

sampled from each age class. Even when no individuals are sam-

pled from an age class for both males and females, and sampling

effort is relatively low (e.g., 16%), the estimator still yields good

estimates of Ne (Table 1 shows these results for equal fertility

only, but comparable results were also obtained for unequal fer-

tility conditions). Newborn individuals are relatively more impor-

tant than other age classes, and the complete absence of newborns

in a sample leads to an overestimation of generation interval and

underestimation of Ne. However, the estimator can also become

highly biased and imprecise when data from several age classes

are missing (data not shown).

The results in Table 1 indicate that the inaccuracy of EPA

is caused predominantly by the sampling variances rather than

biases. In a very small sample due to a low sampling proportion,

there are either very few or no PO dyads. In such a small sample,

the presence or absence of PO dyads can have a disproportionate

effect on the estimator: in their presence the proportion of PO

dyads in the sample is too large, whereas in their absence the

proportion is too small. In other words, Ne estimates are in a

bimodal distribution when sampling proportion is small. This

pattern is illustrated in Figure 1, which shows the EPA estimates

of Ne from 500 replicate datasets under each sampling proportion

(2%, 4%, 16%, 32%) when individuals within an age class have

the same expected fertility. Therefore, for small samples due to

6 EVOLUTION 2010



ESTIMATION OF PARAMETERS OF INBREEDING AND GENETIC DRIFT

Figure 1. Distributions of Ne estimates (in natural logarithm) from EPA. Data were simulated with parameters n1 = 3, n2 = 4, {pr 1,1,

pr 1,2, pr 1,3} = {0.10, 0.25, 0.15}, {pr 2,1, pr 2,2, pr 2,3, pr 2,4} = {0.10, 0.15, 0.15, 0.10}, {N0,1, N1,1, N2,1, N3,1} = {300, 200, 150, 100}, {N0,2,

N1,2, N2,2, N3,2, N4,2} = {300, 200, 150, 100, 50}, where r = 1, 2. The sampling proportion is 2% (A), 4% (B), 8% (C), and 16% (D) for each

age class (0∼3 year old males, 0∼4 year old females). Within each age class, individuals are sampled at random, and the sex and age

of and parentage among the sampled individuals are assumed known. The horizontal line in the graphs indicates the actual parameter

value of Ne, which is 673 (6.51 in natural logarithm) for an equal expected fertility among individuals within an age class.

a very low sampling proportion, the estimates of Ne should be

treated with caution.

THE TYPE, NUMBER AND POLYMORPHISM

OF MARKERS

Given the sampling effort, the accuracy of EPA depends critically

on the accuracy of parentage assignments, which is determined

mainly by the information content of markers. Table 2 compares

the estimates of L and Ne when different types, numbers, and

polymorphisms of markers are used in the analysis. As can be

seen, both L and Ne are accurately estimated by EPA using ≥8

microsatellites or ≥50 single nucleotide polymorphisms (SNPs).

However, both L and Ne are overestimated when using only five

microsatellites. This is because five loci do not usually provide

sufficient information to assign parentage at the 95% confidence

level. As a result, too few PO dyads are identified by colony, lead-

ing to an overestimation of Ne. It is also difficult to use dominant

markers (random amplification of polymorphic DNA [RAPDs])

to assign parentage and thus estimate Ne accurately. A substantial

bias of Ne is present even when hundreds of dominant mark-

ers are used in the analysis. The estimates of Ne obtained with

dominant markers are fairly precise (SD small) but consistently

smaller than the true value of 673 by about 50%. This is because

dominant markers are particularly uninformative in distinguish-

ing full-siblings and PO relationships, and roughly 1000 dominant

markers (each having two equi-frequency alleles) are required to

correctly distinguish the two competing relationships at a fre-

quency of 80% (Wang 2006). Therefore, some full-sibling dyads

were falsely assigned PO relationship when dominant markers

were used in the parentage analysis, leading to an underestima-

tion of Ne.

ESTIMATES OF OTHER PARAMETERS

In addition to L and Ne, EPA estimates other parameters that spec-

ify the inbreeding and genetic drift processes in a population with

overlapping generations. These parameters are the reproductive

contribution (prs,i), number of individuals (Ns,i), and proportion

of individuals sampled (Ss,i) for each age-sex class, together with

the generation interval (Ls) and variance of lifetime family size

(σ2
sr ) for both sexes. Table 3 lists the simulation results for the

population considered in Tables 1 and 2. As can be seen, all pa-

rameters are estimated with little bias. Compared with Ne and

L, however, these component parameters are less accurately esti-

mated under the same conditions. The RMSEs of the component

parameters are often not much smaller than the mean estimates,

in contrast to Ne and L in which the RMSE is about one-seventh

and one-fifteenth of the mean estimates, respectively (Table 2).

Similar to the estimates of Ne as listed in Table 1, the estimates of
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Table 2. Effect of marker information on the L and 1/Ne estimates from EPA.

L 103/Ne
Marker Number

of loci Mean SD RMSE Mean SD RMSE

Microsatellites 5 3.14 0.52 0.99 0.020 0.039 1.471
8 2.27 0.17 0.17 1.739 0.285 0.380

10 2.32 0.14 0.15 1.595 0.211 0.237
15 2.34 0.15 0.15 1.544 0.234 0.241

SNPs 50 2.26 0.15 0.16 1.645 0.221 0.271
100 2.34 0.15 0.15 1.547 0.232 0.239
150 2.35 0.15 0.15 1.516 0.224 0.227

RAPDs 150 2.14 0.15 0.22 1.867 0.244 0.451
300 2.19 0.12 0.16 2.273 0.263 0.828
450 2.18 0.12 0.17 2.407 0.284 0.962

Data were simulated with parameters n1=3, n2=4, {pr 1,1, pr 1,2, pr 1,3}={0.10, 0.25, 0.15}, {pr 2,1, pr 2,2, pr 2,3, pr 2,4}={0.10, 0.15, 0.15, 0.10}, {N0,1, N1,1,

N2,1, N3,1}={300, 200, 150, 100}, {N0,2, N1,2, N2,2, N3,2, N4,2}={300, 200, 150, 100, 50}, where r=1, 2 (following Table 1). The sampling proportion for each

age class (0∼3 year old males and 0∼4 year old females) is 16%. Individuals within any age class are assumed to have the same expected fertility. The actual

parameter values of L and 103/Ne are 2.30 years and 1.486, respectively. Each sampled individual is sexed, aged, and genotyped at a number of marker

loci. Microsatellites, SNPs and RAPDs, respectively represent highly polymorphic codominant markers (10 alleles per locus), low polymorphic codominant

markers (two alleles per locus), and dominant markers (two alleles per locus). All markers are assumed to have an initially equal allele frequency.

other parameters become less accurate when expected fertilities

are very different among individuals within an age class (results

not shown).

NUMBER OF AGE CLASSES

The EPA method applies to any age structure of a population,

including the special case of discrete generations. In the latter

Table 3. Estimates of all parameters by EPA.

Males Females
Parameter set Parameter

Actual value Mean SD RMSE Actual value Mean SD RMSE

Reproduction prs ,1 0.10 0.11 0.04 0.04 0.10 0.09 0.04 0.04
prs ,2 0.25 0.25 0.06 0.06 0.15 0.13 0.05 0.05
prs ,3 0.15 0.14 0.05 0.05 0.15 0.17 0.06 0.06
pr 2,4 0.10 0.11 0.06 0.06

Age class 103/Ns ,1 5.00 4.90 1.10 1.11 5.00 5.81 1.21 1.46
Size 103/Ns ,2 6.66 6.86 1.35 1.36 6.66 7.58 1.39 1.67

103/Ns ,3 10.00 11.14 2.23 2.50 10.00 9.22 2.54 2.66
103/N2,4 20.00 16.61 6.32 7.17

Sampling percentage Ss ,1 16 17.4 4.6 4.9 16 20.6 5.7 7.3
Ss ,2 16 16.7 4.2 4.3 16 18.9 5.3 6.1
Ss ,3 16 20.6 5.4 7.1 16 15.3 4.6 4.7
S2,4 16 16.8 6.4 6.5

Variance of lifetime σ2
s1 1.273 1.335 0.213 0.222 1.460 2.188 1.376 1.557

family size σ2
s2 1.273 1.096 0.512 0.542 1.460 1.398 0.227 0.236

σs1,s2 0.273 0.265 0.160 0.161 0.460 0.526 0.349 0.355
Generation interval Ls 2.10 2.05 0.16 0.17 2.50 2.61 0.25 0.27

Data were simulated with parameters n1=3, n2=4, N0,1=N0,2=300 and other parameter values shown in columns 3 and 7 (following Tables 1 and 2).

Individuals within any age class are assumed to have the same expected fertility. Each sampled individual is sexed, aged, and genotyped at 10 microsatellite

loci, each having 10 alleles at an initially equal frequency.

case, both males and females reproduce at most just once in

their lifetime, and the sampled individuals can be partitioned into

two age classes, class 0 and 1 corresponding to the offspring

and parental generation, respectively. Table 4 lists the simula-

tion results for three age structures, which have respectively 1,

8, and 16 age classes for both nonnewborn males and females.

Analyses were conducted assuming that the sampling proportion
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Table 4. Effect of the number of age classes on the L and 1/Ne estimates from EPA.

L 104/Ne
Sampling Number of
percentage age classes Actual values Mean SD RMSE Actual values Mean SD RMSE

Unknown 1 1.00 1.00 0.00 0.00 8.45 8.92 3.64 3.69
8 5.18 5.28 0.19 0.22 1.94 2.29 1.05 1.10

16 10.16 11.53 0.39 1.43 1.37 1.95 0.59 0.83

Known 1 1.00 1.00 0.00 0.00 8.45 9.27 3.68 3.80
8 5.18 5.16 0.16 0.16 1.94 1.92 0.75 0.75

16 10.16 10.29 0.31 0.33 1.37 1.41 0.65 0.65

Data were simulated assuming an equal number of male (n1) and female (n2) age classes. When ns=1, the population consists of 1000 individuals of each

sex and an individual reproduces at most only once in its lifetime (i.e., discrete generation model). When ns=8, the parameters are {0.01, 0.02, 0.04, 0.08,

0.16, 0.08, 0.06, 0.05} for {prs ,i} where r,s=1,2 and i=1∼8, and are N1,s=1000 and Ni+ 1,s=Ni ,s−50 for s=1,2 and i=1∼7. When ns=16, the parameters

are {0, 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.04, 0.04, 0.05, 0.05, 0.05, 0.05, 0.04, 0.04, 0.02} for {prs ,i} where r,s=1,2 and i=1∼16, and are N1,s=1000 and

Ni+ 1,s=Ni ,s−50 for s=1,2 and i=1∼15. In all three cases, the sampling proportion is 10% for each age class, and each sampled individual is genotyped at 15

microsatellite loci (each having 10 alleles at an initially equal frequency in simulations). Data were simulated under a differential fertility model, with half

the newborns marked as high fertility and the other half as low fertility. A high-fertility individual is 10 times more likely to contribute reproductively than

a low-fertility individual of the same age class at any time. Analyses of the simulated data were conducted assuming the sampling proportion (sampling%,

first column) is either known or unknown (and estimated by EPA in the latter case).

is either known or unknown and estimated jointly with other

parameters.

With discrete generations, Ne estimates are almost unbiased

and reasonably precise no matter whether the sampling propor-

tion is known or not. With overlapping generations, Ne is slightly

underestimated when the number of age classes, ns, is large. How-

ever, the overall accuracy as measured by RMSE is still reasonably

good. An examination of the distribution of Ne estimates for the

case of ns = 16 shows that only 7% and 1% of the estimates

are smaller than 1/2Ne (= 3645) and larger than 3/2Ne (= 10,937)

respectively. With known sampling proportions, the estimates of

Ne and L become unbiased and accurate.

The simulation results in Table 4 also show that EPA applies

to large populations. For the case of ns = 16, there are in total

20,000 individuals distributed in age classes 1–16 and the effective

size is 7291. The effective size would be 12,202 if there were

no difference in fertility among individuals in expectation. As

long as a substantial proportion of the population is sampled

and genotyped at a sufficient number of loci, accurate parentage

assignments provide sufficient information for the estimation of

L, Ne, and other parameters.

THE LIFE-HISTORY OF SPECIES

To investigate whether EPA applies to different species that may

have dramatically different life histories as defined by age-specific

survival and reproduction rates, we simulated and analyzed data

for three species typical of the three types of survivorship. Fol-

lowing Waples and Yokota (2007): we chose humans to represent

type I survivorship species, characterized by a high survival well

into adulthood followed by a period of rapidly increasing mor-

tality; white-crowned sparrows (Zonotrichia leucophrys nuttalli)

to represent type II survivorship species, characterized by a con-

stant survival rate after an episode of high early mortality; and

the barnacle (Balanus glandula) to represent type III survivor-

ship species, characterized by an extremely high early mortality

followed by a constant survival rate. We used the age-specific

survival and reproduction rates listed in Table 2 from Waples and

Yokota (2007) to obtain the parameters of our model and analyze a

population matching the life-history of each of these three species,

as listed in Table 5. Each population is simulated and sampled at

two intensities, and each sampled individual is sexed, aged, and

genotyped at 10 microsatellites (each having 10 equi-frequency

alleles initially in simulations). The quality of estimates of L and

Ne from EPA is listed in Table 5.

As can be seen, EPA yields good estimates of both L and

Ne for all three species. Unsurprisingly, barnacles represent the

most difficult species for EPA, because the extremely high early

mortality makes it difficult to capture the PO relationships in a

sample with a low sampling intensity. At a low sampling intensity,

therefore, Ne tends to be overestimated. This remains true when

the PO relationships in a sample are known rather than inferred

by genetic markers (data not shown).

ANALYSIS OF A BABOON DATASET

These data are taken from a long-term study of a wild population

of chacma baboons (Papio ursinus) living at Tsaobis Leopard

Park, on the edge of the Namib Desert in Namibia (Cowlishaw

1999). Chacma baboons typically live in social groups of 20–

80 individuals, containing multiple males, multiple females, and

offspring. Females are philopatric whereas males leave their natal

group and join other groups on reaching adulthood. The study

population consists of six groups. Four groups, F, G, H, and I,
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Table 5. Effects of life histories on the L and 1/Ne estimates from EPA.

Human Sparrow Barnacle
Age Class i

Ni ,s prs ,i Ss ,i (1) Ss ,i (2) Ni ,s prs ,i Ss ,i (1) Ss ,i (2) Ni ,s prs ,i Ss ,i (1) Ss ,i (2)

1 100 0 0.1 0.2 1000 0 0.05 0.1 105 0 0.001 0.002
2 98 0 0.1 0.2 180 0.229 0.1 0.2 62 0.112 0.25 0.5
3 98 0.008 0.1 0.2 95 0.131 0.1 0.2 34 0.117 0.25 0.5
4 97 0.141 0.1 0.2 51 0.074 0.1 0.2 20 0.091 0.25 0.5
5 97 0.167 0.1 0.2 27 0.042 0.1 0.2 16 0.080 0.25 0.5
6 97 0.104 0.1 0.2 14 0.023 0.1 0.2 11 0.055 0.25 0.5
7 96 0.055 0.1 0.2 – – – – 7 0.035 0.25 0.5
8 96 0.022 0.1 0.2 – – – – 2 0.010 0.25 0.5
9 95 0.003 0.1 0.2 – – – – – – – –

L(True) 5.26 5.26 3.00 3.00 4.00 4.00
L̂(Mean) 5.32 5.29 3.49 3.44 3.67 3.75
L̂(SD) 0.46 0.23 0.38 0.23 0.28 0.21
(L̂<L/2)% 0.00 0.00 0.00 0.00 0.00 0.00
(L̂>3L/2)% 0.00 0.00 0.60 0.10 0.00 0.00

Ne(True) 1024 1024 740 740 240 240
N̂e(Mean) 951 979 622 682 345 277
N̂e(SD) 146 132 184 95 56 27
(N̂e<Ne/2)% 0.20 0.10 0.40 0.00 0.00 0.00
(N̂e>3Ne/2)% 0.60 0.90 0.70 0.30 32.6 0.62

Parameters Ni ,s and prs ,i for the three species are based on Tables 2 and 3 from Waples and Yokota (2007). For each age class i, it is assumed that Ni,1=Ni,2,

p11,i = p12,i = p21,i = p22,i , and S1,i =S2,i . For humans, age classes are in units of 5 years and age classes i>9 are ignored because they do not contribute

reproductively and thus have no effect on either L or Ne. Age classes are in units of 1 year for barnacles and sparrows. For each species, two sampling

intensities (columns headed by Ss ,i (1) and Ss ,i (2)) are considered in the simulations. (L̂ <L/2)% and (L̂ >3L/2)% give the percentages that the estimates are

smaller than L/2 and larger than 3L/2, respectively. The quality of estimates for N̂e is similarly measured and denoted.

were captured during the years 2000∼2001, and two extra groups,

J and L, were captured in 2006. The numbers of captured animals

are 17, 26, 59, 18, 55, and 32, and the group sizes at capture are

17, 27, 78, 19, 57, and 32, for groups F, G, H, I, J, L, respectively.

For each captured animal, sex is identified and age is estimated

through a dental examination (Huchard et al. 2009), and a tissue

sample is taken for DNA analysis at 16 microsatellite loci and a

major histocompatibility complex (MHC) locus (which contains

multiple segments of the DRB region of the MHC) (Huchard

et al. 2008). The number of alleles varies between 3 and 11 for

the microsatellite loci, and there are 15 distinct MHC haplotypes.

For the current analysis, the sample is split into two subsam-

ples, the first being the 120 animals captured from groups F, G,

H, and I during the years 2000–2001 and the second being the 87

animals captured from groups J and L in the year 2006. The two

subsamples are analyzed separately for estimating the generation

intervals and effective sizes of the two clusters of groups. Be-

cause the sampling proportion is known (83% and 98% for group

cluster F-G-H-I and J-L, respectively), it is fixed in the analysis.

Because of the small sample size and the long life span (maximum

age observed to be 19 years), we use a time unit of two years to

partition the sampled individuals into 11 age classes, with class 0

being newborns younger than two years at capture. The minimum

age for reproduction is approximately five years for both males

and females (e.g., Altmann and Alberts 2003), so individuals in

age class i + 2 or younger are excluded as candidate parents for

individuals of age class i (= 0∼10).

As expected, consistent results are obtained from the sepa-

rate analyses of the two subsamples (Table 6). First, males tend to

have larger variances and covariances of lifetime family size than

females. This reflects the high reproductive skew observed among

male baboons: the alpha male monopolizes most mating opportu-

nities in his group, thus siring most of the juveniles born during or

shortly after his tenure (Altmann et al. 1996; Alberts et al. 2006),

whereas most subordinate males cannot gain access to fertile fe-

males (Bulger 1993; Weingrill et al. 2000). In contrast, all females

in the group reproduce, although with dominant females repro-

ducing at a higher rate (e.g., Altmann and Alberts 2003). Second,

the paternal generation interval is longer than the maternal gener-

ation interval. This is most likely because the male’s reproductive

output is concentrated during his alpha tenure that is typically

reached in his prime (ca. 8–12 years old) (van Noordwijk and

van Schaik 2004), whereas females start reproducing soon after

sexual maturity with their first birth at about six years of age (e.g.,

1 0 EVOLUTION 2010



ESTIMATION OF PARAMETERS OF INBREEDING AND GENETIC DRIFT

Table 6. Parameter estimates for the baboon dataset.

Group cluster L1 L2 L σ2
11 σ2

12 σ11,12 σ2
21 σ2

22 σ21,22 Ne

F-G-H-I
Estimate 13.9 9.4 11.7 5.10 9.48 5.75 1.05 1.67 0.48 84
95%CI_L 11.7 8.7 10.8 2.54 1.73 1.56 0.57 1.24 0.25 54
95%CI_U 15.4 13.3 13.9 11.53 39.80 14.86 5.65 4.59 3.14 155

J-L
Estimate 15.3 12.7 14.0 9.85 18.03 12.14 2.00 3.39 1.74 60
95%CI_L 12.6 12.0 12.8 5.16 2.20 3.83 0.54 2.13 0.88 43
95%CI_U 17.8 14.6 15.8 25.99 116.3 36.27 13.65 5.94 5.44 128

The estimate, the lower (95%CI_L) and upper (95%CI_U) limits of the 95% confidence interval are listed for each parameter. The parameters are the

paternal (L1), maternal (L2), and mean (L) generation intervals, the variances of the lifetime number of sons and daughters for males (σ2
11,σ2

12) and females

(σ2
21,σ2

22), the covariances between the lifetime numbers of sons and daughters for males (σ11,12) and females (σ21,22), and the effective population size (Ne).

Generation intervals (L1, L2, L) are in years.

Altmann and Alberts 2003). Finally, the estimate of the Ne/N ratio

for group cluster F-G-H-I (0.54) is comparable to that for group

cluster J-L (0.42). Both values are also similar to the value of 0.51

obtained for another baboon population (yellow baboons Papio

cynocephalus) using extensive accumulated data on life-history

variables (Storz et al. 2002). In calculating Ne/N, N is the number

of adults present during the period equivalent to the generation

interval, and is calculated as the product of the estimated number

of 6- to 8-year-old individuals (age class 3) and L. The estimated

values of N are 157 and 143 for group clusters F-G-H-I and J-L,

respectively.

ANALYSIS OF A HIHI DATASET

These data are taken from a long-term study of a wild, rein-

troduced population of hihi, or stitchbird (Notiomystis cincta), a

New Zealand endemic and endangered, forest-dwelling passerine.

The population is found on the offshore island of Tiritiri Matangi

(36◦36′S, 174◦53′E) which is a 220-ha island in the Hauraki Gulf.

Hihi have a promiscuous mating system, and extra-pair copula-

tions are frequent, which leads to substantial extra-pair paternity

(Ewen et al. 1999). Hihi can breed within their first year of life,

the minimal age at first breeding being roughly 10 and 11 months

for males and females, respectively (Brekke 2009). For the cur-

rent analysis, 261 hihi of the 305 recorded in the population were

either caught as nestlings or adults in feeding cage traps during

the Austral 2006/2007 breeding season (September–February).

Table 7. Parameter estimates for the hihi dataset.

L1 L2 L σ2
11 σ2

12 σ11,12 σ2
21 σ2

22 σ21,22 Ne

Estimate 3.59 2.93 3.26 1.29 2.35 1.01 1.63 2.05 0.90 111
95%CI_L 2.73 1.99 2.56 1.11 0.74 0.14 0.39 1.12 0.09 93
95%CI_U 4.13 4.08 3.88 1.85 6.18 1.07 5.89 6.52 6.52 258

Notation follows Table 6.

Blood samples were collected and genotyped at 19 microsatellite

loci, with the number of alleles ranging from 2 to 10 per locus

(Brekke et al. 2009). The sex of individuals was inferred from

two sex-linked markers and/or from adult plumage morphology

(Brekke 2009), whereas age was obtained from breeding records

and annual census. The sampled males and females have maxi-

mal ages of 6 and 8 years, respectively, and are thus divided into

7 (0∼6) and 9 (0∼8) age classes, with class 0 being fledglings

younger than six months at capture. Although the sampling pro-

portion for each age class can be reliably estimated from the

detailed census records for this dataset, it is assumed unknown

in the analysis to demonstrate that our method does not rely on

known sampling proportions.

The results are summarized in Table 7. In contrast to the

baboon results, there is no obvious difference in the variances and

covariances of lifetime family sizes between male and female hihi

individuals. This is probably because the strong social structure

seen in baboons, where a single dominant male monopolizes most

breeding opportunities within a group, is absent from the hihi

population, in which both territorial and floater males share the

paternity of fledglings (Ewen et al. 1999). Similar to the baboon

results, the paternal generation interval is longer than the maternal

generation interval. However, this could be due to a sampling

effect, because there are no females in age classes 4∼7 and there

is just one female in age class 8. Because of the lack of old

females in the sample, the maternal generation interval might be
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underestimated. The effective size of the population is estimated

to be 111, with a 95% confidence interval of 93∼258. The total

number of 1-year-old adults in the population at census is 50, so

the number of adults during a generation interval is N = 3.26 ×
50 = 163. The Ne/N ratio is thus about 0.68, higher than that in

the baboons, as expected given that hihi do not exhibit such strong

male reproductive skew.

Discussion
In this study, we showed that the effective size of a population

with overlapping generations can be inferred by an estimator that

uses the sex, age, and multilocus genotype information of a single

sample of individuals taken at random from the population. The

estimator fits the observed numbers of parentage assignments

among age classes to a genetic model to obtain estimates of Ne

and L, as well as other important parameters such as the variances

and covariances of lifetime family sizes. Simulations indicate

that under realistic sampling and genotyping efforts, the estimator

yields accurate estimates, especially for the composite parameters

of Ne and L.

Similar to the case of discrete generations (Wang 2009),

the Ne of a population with overlapping generations can also be

estimated from sibship assignments, using essentially the same

information as the EPA estimator. Following the approach adopted

in Wang (2009), we obtained (derivation available upon request)

1

Ne
= 1

16L

2∑
s=1

ns−1∑
i=0

(2 − δi )(Q11,i,s + Q22,i,s + 2Q12,i,s),

where Qrt,i,s is the probability that two individuals of sexes r and

t (r, t = 1, 2) with an age difference of i years (0 ≤ i ≤ ns − 1)

taken at random from the population share the same parent of sex

s (s = 1, 2), and δi is the Kronecker delta (δi = 1, 0 if i = 0 and

i 
= 0, respectively). All of the Q terms can be estimated from a

sibship analysis of a single sample of individuals taken at random

from a population, using the sex, age, and multilocus genotype

of each sampled individual as information. When n1 = n2 = 1,

the above equation for Ne reduces to that of a population with

discrete generations (eq. 9 in Wang 2009) in the case of random

mating, as expected. Our simulations show that this sibship-based

estimator is equally or slightly more accurate than EPA when

the actual sibship and parentage among sampled individuals are

known without error. However, it usually underestimates Ne sub-

stantially when markers are used in sibship assignments in the

case of a population with overlapping generations, where several

relationships equivalent to half-sibling relationship (in the pat-

tern and amount of relatedness) typically coexist. For instance,

the avuncular and grandparent–grandoffspring relationships are

indistinguishable from a half-sibling relationship for a pair of in-

dividuals, no matter how many unlinked autosomal markers are

used (Epstein et al. 2000; Wang 2007). Such relationships in-

evitably cause an overestimation of half-sibling frequencies and

an underestimation of Ne (simulation results not shown) in popu-

lations with overlapping generations. It thus seems rather difficult

to estimate Ne from sibship frequencies for populations with over-

lapping generations, except when sibship is known (from behav-

ioral observation) or can be accurately inferred (e.g., when most

sampled individuals are in large sibships containing more than two

individuals). In contrast, such across-generation relationships are

absent from a sample of a single cohort of individuals, and there-

fore the sibship assignment method is accurate for a population

with discrete generations (Wang 2009).

Fortunately, parentage assignments can be accurately in-

ferred even in the presence of closely competing relationships

such as full sibship. This is because the PO relationship is unique

in the pattern of identical by descent (IBD). In a large popula-

tion under random mating, a PO dyad always shares one pair

of alleles IBD at each locus, meaning that the inherent variance

of IBD among loci is zero (Wang 2002). The PO relationship is

thus easily inferred and distinguished from other relationships.

Indeed, as verified by simulations in the current study, the PO re-

lationship can be reliably identified and distinguished from other

relationships among a sample of individuals taken from a popu-

lation with overlapping generations, using a realistic number of

polymorphic markers (say, 10∼20 microsatellites). An advantage

of the parentage-based estimator, EPA, is that it provides infor-

mation on the generation interval, variance in family size, and

effective number of breeders of each age class as well as Ne. In

other words, EPA gives not only a simple estimate of Ne and L,

but also the estimates of their causal parameters that facilitate the

interpretations of the Ne and L estimates and, more importantly,

provide useful information for population management to main-

tain genetic variation. For example, if a small Ne is estimated, and

attributed to a large variance in family size among male breeders,

then measures may be taken to minimize this variance, such as

removal of the dominant males.

Throughout this study, we focused on the effective size at

autosomal diploid loci in dioecious species. A great advantage

of EPA is that it can use autosomal marker data to estimate Ne

and L for X-linked, Y-linked, and mtDNA loci as well. Let us

consider group cluster F-G-H-I of baboons as an example. Using

the estimates listed in Table 6, we obtain an average generation

interval of 10.9 years, 13.9 years, and 9.4 years, and an estimate

of Ne of 68, 28, and 82, for X-linked, Y-linked, and mtDNA loci,

respectively. The ratios Ne(X )/Ne, Ne(Y )/Ne, Ne(mt)/Ne are 0.81,

0.33, and 0.98 respectively, deviating from the expected values

of 0.75, 0.5, and 0.5 when both males and females have Poisson

distributed family sizes (Caballero 1994). The deviations can be

explained by the much larger variance of paternal family size than

that of maternal family size as observed in the baboon dataset.
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In spirit, sibship and parentage assignment methods for esti-

mating Ne are analogous to the mark–recapture method in ecology

for estimating the population size. This is especially obvious with

the sibship assignment method. Two siblings in a sample mean a

recapture of the sibship they represent, and the frequency of sib-

ling dyads in a sample of individuals taken at random (with respect

to kinship) from the population gives information about the effec-

tive number of breeders. A high sibling frequency would mean

either a small number of actual breeders, or a high reproductive

skew (a large variance of family size) among breeders, or both.

The method using parentage assignments is more complicated,

but is still similar to the mark–recapture method in principle. For

example, the co-assignment of paternity of two individuals to the

same or different individuals in age class i affects the recapture of

reproduction events in this age class, and would indicate a high

reproductive contribution and a high sampling proportion of age i.

Noticing the close analogy between the parentage assign-

ment methods for estimating Ne and the mark–recapture method

for estimating population size, it is understandable that the sam-

pling proportion is critical in determining the accuracy of the

estimates. When a very small proportion of individuals are sam-

pled, the Ne estimates may become bimodally distributed (Fig. 1).

It should be emphasized that other factors, such as the Ne/N ratio,

also has a large impact on the accuracy of the methods. For a

given small sampling proportion (say, 5%), a small Ne/N ratio

means that there could still be a substantial number of parentage

assignments among sampled individuals, which ensures a high ac-

curacy. It is really the expected number of parentage assignments

that determines the accuracy. The larger this expected number of

assignments, the higher will be the accuracy.

Compared with the temporal method proposed to estimate Ne

for populations with overlapping generations (Jorde and Ryman

1995), the parentage assignment method requires much less infor-

mation. It only requires the information of sex, age, and multilocus

genotypes of a sample of individuals taken at random (with re-

spect to kinship) from the population. The age-specific survival

and reproduction rates required by the temporal method are not

necessary in EPA. This is a great advantage because these life-

table variables are not only numerous but also notoriously difficult

to estimate. In fact, when one knows the life-table of a population,

one already knows its generation interval as well as, to a good ex-

tent, its effective size. In contrast, EPA estimates these life-table

variables or their equivalents from parentage assignments, and

thus the summary parameters of L and Ne. Although these esti-

mates of individual life-table variables tend to be unbiased, their

precision is usually low, and usually much lower than that of the

summary parameters of L and Ne (Table 3). Therefore, except

when the sampling proportion is high and the marker information

sufficient, one should be cautious about the estimates of individual

life-table variables from EPA.

EPA is based on genetic models of populations with over-

lapping generations (Felsenstein 1971; Hill 1972; Johnson 1977),

and the assumptions of those models equally apply to EPA. The

important assumptions are a constant size and age structure of

a population under random mating and with random births and

deaths. Of course no real populations satisfy these restrictive as-

sumptions, but it seems quite reasonable that small departures

from them should not affect the results much (Hill 1979). The

additional assumption made by EPA is random sampling, which

dictates that individuals must be taken at random with respect to

kinship from the population. A sampling scheme favoring related

(unrelated) individuals will cause an underestimation (overesti-

mation) of Ne. Localized sampling, where individuals are sampled

predominantly from a local area, may lead to excessive parentage

assignments and thus an underestimate of Ne. EPA also assumes

that all individuals in a sample should be taken at the same time

so that the ages and relationships of the sampled individuals are

based on the same time point. However, as long as the sampling

length (during which all individuals are sampled) is short relative

to the time unit adopted in the analysis, the validity of EPA should

be little affected.

Another assumption made by EPA is that the age of each

sampled individual is known without error. In practice, however,

the age of an individual is usually estimated from morphological

traits, such as dentition in mammals and scales and otoliths in fish.

Therefore age estimates can be imprecise, and how robust EPA is

to the errors of age estimation is of a concern. To investigate this,

we conducted simulations in which the ages of a proportion of the

sampled individuals were set to values drawn at random between

the minimum (0) and maximum ages. In simulations based on 10

microsatellites and with other parameter values fixed as listed in

Tables 1 and 2, the mean estimates of 1000/Ne (true value = 1.49)

are 1.59, 1.54, 1.52, 1.46, 1.35, 1.20, and the RMSEs of 1000/Ne

are 0.24, 0.25, 0.22, 0.23, 0.25, 0.35, when a percentage of 0, 4,

8, 16, 32, 64 of the sampled individuals are given a random age,

respectively. It thus seems that EPA is fairly robust to estimation

errors of age. EPA leads to a substantial overestimation of Ne and

a much reduced accuracy only when a large proportion of the

sampled individuals are assigned incorrect ages.

A computer program, AgeStructure, which implements the

EPA method described in this study is posted on our website

(http://www.zsl.org/science/research/software/) for free down-

load and use.
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