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Human beings universally express a concern for the fairness of social interactions, and it remains an open question that which

ultimate factors led to the evolution of this preference. Here, we present a model accounting for the evolution of fairness on

the basis of individual selection alone. We consider a simple social interaction based on the Dictator Game. Two individuals, a

“proposer” and a “responder,” have an opportunity to split a resource. When they have no choice but to interact together, the

most powerful (here the proposer) reaps all the profits and fairness cannot evolve. Partner choice is the key lever to overcome this

difficulty. Rather than just two individuals, we consider a population composed of two classes of individuals (either proposers or

responders), and we allow the responders to choose their partner. In such a “biological market,” fairness evolves as an “equilibrium

price,” resulting from an ecological equivalent of the law of supply and demand. If a class is disadvantaged by the chosen resource

partition (i.e., if it frequently receives less than half of the resource), it is outcompeted by the other one, and automatically becomes

rarer. This rarity grants it an advantage on the market, which yields in turn to the evolution of a more favorable partition. Splitting

the resource into two identical halves, or more generally in a way that equalizes the payoffs of the two classes, is then the only

evolutionarily stable outcome. Beyond human fairness, this mechanism also opens up new ways of explaining the distribution of

benefits in many mutualistic interactions.
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The evolution of cooperation among nonrelated partners, espe-
cially in humans, has been the object of intense modeling and
debates in recent decades. The vast majority of work in this area
aims to understand how natural selection may lead to the emer-
gence and maintenance of cooperation (Axelrod 1981; Nowak and
Sigmund 1992, 1998; Leimar and Hammerstein 2001; Lehmann
and Keller 2006; Nowak 2006). Yet, although this body of work
has been central to our understanding of the existence of coop-
eration, it is also essential to understand how natural selection
has shaped the “way” we cooperate, and in particular the way

we share its benefits. Indeed, whereas the surplus generated by a
cooperative interaction can in principle be distributed in infinitely
many ways, human beings systematically prefer certain, so-called
“fair,” distributions (e.g., half-and-half splits in symmetric inter-
actions). The aim of the present article is to explore how natural
selection has shaped these preferences.

ASYMMETRIC NEGOTIATION

With this aim, taking a step further relative to most models on
cooperation, we take for granted the occurrence of a cooperative
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interaction between two players, generating a surplus of constant
size, and we seek to understand how partners distribute this sur-
plus (under the assumption that it is perfectly divisible). As a
particularly simple negotiation mechanism, we consider a strate-
gically asymmetric interaction (i.e., asymmetric with regard to
negotiation power) in which one player, called the “proposer,”
has the power to definitely commit to a division of the resource,
with no chance of changing his mind afterward, and the other,
called the “responder,” has no better option than to accept it (see
Schelling 1960). The paradigmatic examples of such negotiations
are the well-known dictator and ultimatum games (DG and UG;
Güth et al. 1982; Camerer 2003). In both games, the proposer
commits to an offer that the responder can only accept (in the
DG) or can either accept or entirely refuse (in the UG).

The evolution of each partner’s strategy in such negotiations
is straightforward to understand (see also Nowak et al. 2000). On
one hand, whatever offer a responder’s partner makes, she gains
more resources if she accepts it than if she rejects it. Therefore, in
all cases, natural selection favors indiscriminate responders taking
whatever resources are made available to them. On the other hand,
and as a result, selection favors stingy proposers offering the
minimal possible amount. The resource division at evolutionary
equilibrium is thus maximally “unfair”: the empowered individual
(the proposer) keeps virtually all the resource.

Admittedly, in less asymmetric, more complex, and often
more realistic, negotiation processes, in which each partner can
successively reject the other’s offer and make his own afterward,
the equilibrium split is less asymmetric (Stahl 1972); and when
both players have the exact same negotiation power the equilib-
rium split is just fair, (Rubinstein 1982). But what we aim to
explain here is the fact that human beings express concerns for
fairness even when negotiation power is unequal. In social life,
taking advantage of a local strategic advantage is often viewed as
a paradigmatic instance of unfairness (e.g., stealing in a shop be-
cause the shopkeeper is old and weak). In brief, the distribution of
resources among humans is typically not the outcome of a mere
power struggle, and this is what we aim to understand. Highly
asymmetric interactions are thus particularly interesting for us as
a test case.

REPUTATION WITHOUT PARTNER CHOICE: THE

REVERSAL OF NEGOTIATION POWER

In a paper in Science, Nowak et al. (2000) modified the ulti-
matum game by introducing a mechanism akin to reputation,
and this paper is often considered as theoretical evidence that
“reputation” in general can lead to fairness in this game. Yet
the model presented actually offers no such evidence, and it is
important to understand why.

Nowak et al. (2000) consider a model in which responders
have a reputation consisting in the resource division they are ready

to accept. Some responders are known for being very demanding
(they reject even high offers), whereas others are known for being
very compliant. Pairs of partners are formed randomly, and the
proposer is informed of his responder’s “reputation” and makes
an offer. The offer is then accepted or rejected in accordance with
the responder’s reputation.

Via their reputation, responders now have the power to com-
mit to a given offer (e.g., “any offer below 90% will be rejected”;
“reputation” is hence just another term for “commitment”), and
proposers have no other choice but to comply. In other words,
responder’s reputation, far from removing the strategic asymme-
try of the game, completely reverses it. Because they are the first
to speak, responders now effectively play the role of proposers,
and vice versa. The evolutionary outcome is thus also reversed.
Natural selection favors compliant proposers offering whatever
resources are requested from them, and demanding responders
asking for the maximal possible amount. The resource division at
evolutionary equilibrium is still maximally unfair: the responder
keeps all.

Fairness nevertheless emerges in Nowak et al. (2000) as a
consequence of an assumption. Nowak et al. (2000) a priori re-
strict the parameter space, such that individuals cannot obtain
more resources when they are in the role of responders than when
they are proposers, an assumption chosen precisely to prevent
responders from keeping more than half of the resource at equi-
librium, which would be a “perhaps unrealistic complication”
(Nowak et al. 2000, note 14). As a result, when responders are
advantaged by the power struggle because they are the first to
commit, natural selection leads them to obtain the largest possi-
ble amount of resources within the limits authorized by the model.
In this case, they take just half of the resource.

PARTNER CHOICE

When two partners have no other choice but to interact with each
other, the strategic power struggle is determinant. If the strategic
relationship is completely asymmetric (as in the DG, the UG, or
the “reversed UG” of Nowak et al. 2000), fairness cannot evolve,
unless it is made compulsory by constraints on the parameter
space.

In this article, we aim to show that fairness can nevertheless
evolve in the division of a resource, even when the interaction is
strategically asymmetric, provided responders have the possibil-
ity to “choose” their preferred partner, a mechanism that has been
shown empirically to play an important role in human coopera-
tion (e.g., Barclay 2004; Barclay and Willer 2007; Chiang 2010).
When responders can choose their partner, social life resembles a
“biological market” where proposers compete to be chosen (Noë
and Hammerstein 1994). We develop a series of models showing
how fairness can evolve in such a market. We show that, far from
being a trivial outcome of partner choice, the evolution of fairness
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is the consequence of a complex interaction between resource di-
vision and the demography of each trading class (responders and
proposers).

The Models
The basic model we consider is based upon the dictator game,
except that we consider a population of proposers interacting
with the members of a population of responders that can choose
among them. Each proposer is genetically characterized by his
offer p. In each round, the proposers present in the population
make their offer in public. As in the traditional dictator game,
they are committed to this offer. Individual responders are then
taken one by one in a random order, and asked to choose a proposer
among those that are still unpaired at this time (if any). Once a
proposer has been chosen, he is removed from the pool of available
proposers (i.e., each individual is paired at most with one partner).
For responders, the best strategy consists in picking the most
generous proposer available, and accepting his offer. We hence
assume that all responders follow this strategy (but see Models 3
and 5) and we focus on the evolution of proposers’ offers. The
advantage of small offers is to keep more of the resource for
oneself. The advantage of large offers is to attract partners. These
two opposite selective forces drive the evolution of p.

Note that the very same model can also be described in terms
of reputation (see e.g., Nowak et al. 2000). Proposers’ actual
offers are publicly observed so that when a proposer is genetically
characterized by an offer p he also has the public “reputation” of
offering p. Responders then choose their partner on the basis of
his reputation.

All models are deterministic resident-mutant analyses (May-
nard Smith and Price 1973). We consider a population of infinite
size fixed with a resident strategy and challenge it by introducing
mutants, until we find a resident that no mutant can invade. This
approach is valid under the assumption that mutants rarely occur.
Resident populations are challenged by mutants one at a time,
and novel mutants always appear after the fixation of a previous
mutant is complete (Geritz et al. 1998).

However, because frequency-dependent effects are to be ex-
pected, we do not restrict our analysis to describing the fate of
infinitely rare mutants. We describe the effect of selection for mu-
tants in any frequency x ∈ [ 0, 1 ]. We check (1) whether mutants
that are favored when rare reach complete fixation or remain at an
intermediate frequency, and (2) whether mutants that are counter-
selected when rare can nevertheless invade if they are initially
introduced at a larger frequency.

We develop five distinct models based on these principles
(Models 1–5). Model 1 is fully presented in the article as an illus-
tration of the general principles underlying our analyses; all other
models are described in detail in the Supporting information (SI).

MODEL 1: BIOLOGICAL MARKETS DO NOT ALWAYS

PROMOTE FAIRNESS

In Model 1, we consider a population in which the density of indi-
viduals in each trading class—np proposers and nr responders—is
constant (Noë and Hammerstein 1994). If nr > np, some respon-
ders will end up with no partner, and conversely if np > nr. We
show that fairness cannot evolve in this case.

We consider a population with a density np of proposers, a
fraction 1 − x of which are resident individuals offering p, and a
fraction x are mutants offering p′ = p + δ. We aim to compare
mutants’ and residents’ payoffs. Calling r the relative density of
responders (r = nr/n p), we delineate two cases.

Proposers are limiting (r ≥ 1)
In this case, every proposer ends up paired with a responder.
Residents’ and mutants’ payoffs are P = 1 − p and P′ = 1 − p′,
respectively. Mutants increase in frequency if and only if p′ < p.
Evolution leads to the ultimate fixation of the smallest possible
offer, p = 0.

Responders are strictly limiting (r < 1)
In this case, some proposers (the least generous) end up with no
partner. We then delineate two subcases, depending on the nature
of mutants.

(1) If mutants are more generous than residents (p′ > p),
mutants are preferred. When the density of generous mutants is
strictly lower than the density of responders (i.e., when x < r),
every mutant finds a partner, and some residents do. Residents’
and mutants’ payoffs are P = (1 − p)(r − x)/(1 − x) and P′ =
1 − p′, respectively. Generous mutants increase in frequency if
and only if δ < (1 − p)(1 − r )/(1 − x). There always exist gener-
ous mutants satisfying this condition (recall that r < 1). When the
density of mutants becomes larger than that of responders (i.e.,
when x ≥ r), only mutants end up with a partner (but not neces-
sarily all of them). Residents’ and mutants’ payoffs are P = 0 and
P ′ = (r/x)(1 − p′), respectively. Mutants increase in frequency
until complete fixation.

(2) The very same analysis can be applied to the inverse
situation where mutants are less generous than residents (p′ < p).
If stingy mutants are rare (precisely if x ≤ 1 − r), they are counter-
selected and decrease in frequency until complete extinction. If
stingy mutants are frequent (precisely if x > 1 − r), they increase
in frequency if and only if their difference with the resident is
δ < (1 − p)(r − 1)/(r − 1 + x). In this case they reach complete
fixation.

Overall, when mutants are infinitely rare initially (x = 0),
only generous mutants can increase in frequency when np > nr,
and only stingy mutants can increase in frequency when np ≤ nr.
Evolution leads to the fixation of the largest possible offer (p = 1)
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Figure 1. Evolution of the average offer in simulations, when the densities of proposers and responders are held constant. Each curve is
a single simulation run. In black, mutations are rare (the mutation probability is 10−4 per generation) and of weak effect (mutations have
a normally distributed effect with standard deviation 10−3). In red, mutations are rare and 90% have a strong effect (mutants’ offer is
taken from a uniform distribution between 0 and 1). In green, mutations are frequent (the mutation probability is 10−1 per generation)
and of weak effect. In blue, mutations are frequent and 90% have a strong effect. Population size is 104 and nonsocial payoff 10−5.
(A) The population contains 45% of proposers. The offer is initially 0.75. Evolution leads to the reduction of the average offer down to 0
in all cases. In blue, the deviation from 0 is due to mutation–selection balance. When mutations are rare and of weak effect, evolution
down to 0 is very slow (more than 106 generations). (B) The population contains 55% of proposers. The offer is initially 0.25. Evolution
leads to the increase of the average offer up to 1 in all cases except when mutations are both frequent and of strong effect (blue) because
very stingy mutants can increase in frequency when sufficiently frequent (see SI).

when np > nr, and the lowest possible offer (p = 0) when np ≤
nr. The same occurs when mutants are very weakly different from
residents (δ ≈ 0), whatever their initial frequency. The outcome is
more complex when (1) mutants’ frequency is not infinitely small
and (2) mutants’ effect is not very weak. In this case, evolution
toward p = 0 when np ≤ nr is still guaranteed, but evolution
toward p = 1 when np > nr is not. Stochastic individual-based
simulations (see SI for details on the simulation process) confirm
the analytical results (Fig. 1). When the mutation rate and/or the
effect of mutation are low, evolution leads toward p = 0 or p =
1 (depending on the respective values of np and nr). When the
mutation rate and the effect of mutations are both large, evolution
leads toward p = 0 when np ≤ nr but not to p = 1 when np > nr.

In real-life settings, mutants are expected to be introduced in
very small frequencies. In this case, the least frequent of the two
trading classes always monopolizes the benefits of the interaction.
The strategic power struggle does vanish when proposers are
competing for access to partners, only to be replaced by a “market
power struggle,” which is just as unfair.

MODEL 2: FAIRNESS EVOLVES WHEN SUPPLY AND

DEMAND DEPEND ON PRICES

In microeconomic theory, prices reach equilibrium because they
affect supply and demand. When prices are too high, demand
shrinks and supply rises, which pushes prices down. Conversely,
when prices are too low, demand rises and supply shrinks, which
pushes prices up. There can be no equilibrium without this
feedback.

In our model, “prices” correspond to offers (p), “supply” to
the density of proposers, and “demand” to the density of respon-
ders. So far, prices affect neither supply nor demand, because the
densities of proposers and responders are supposed to be constant
(and because, irrespective of the offers made, every responder
wants to interact with exactly one proposer, and vice versa). As
a result, there is no equilibrium. Any market asymmetry (one
trading class is rarer than the other) inevitably leads to a maxi-
mally unfair distribution of the resource (if mutants are rare and/or
weakly different from residents), because the market effect is con-
sistently pushing in the same direction.

Yet in reality, prices do feed back on supply and demand, even
in biology. This can occur in two sorts of ways. Individuals can
change the quantity of social interaction they entertain in response
to the “price” (this occurs for instance in Johnstone and Bshary
2008). But, in biology, the simplest and most general form that
such feedback may take is demography: prices affect the density
of individuals of each trading class (this is thus an instance of
a demographic feedback in a game, see e.g., Hauert et al. 2006
for another). When division of the resource is biased in favor of
one class, the individuals of this class obtain a larger payoff than
others. The frequency of this class is then likely to increase. It may
occur for two reasons. (1) Trading class is heritable from parent
to child. If a class has a larger average payoff than the other, its
frequency increases owing to natural selection. This occurs for
instance if the trading classes are two different species engaged
in some form of mutualism. (2) An individual’s trading class is
the product of a decision based on various sources of information
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about average payoffs. The class that obtains the largest payoff
tends to be preferred, and becomes more frequent. This occurs
in the case of human behavior, when two different social roles
interact to produce a common good. In either case, the change in
class frequency compensates the inequality of payoffs. When a
trading class becomes more frequent than the other, its average
payoff decreases because individuals of this class have more and
more difficulty finding a partner. The frequency of each class thus
stabilizes precisely when the average payoffs to each are equal.
This is the “ecological equilibrium” of class frequency. In our
model, it is straightforward to show that, for a given average offer
p, the frequency of responders at ecological equilibrium is p, and
that of proposers 1 − p.

Model 2 aims to analyze the effect of this ecological feed-
back on the evolution of offers. To do so, we assume that the
ecological equilibrium of class frequency is reached very rapidly
relative to the rate of evolution of offers (i.e., ecology is faster
than evolution). This assumption is adapted to our primary center
of interest: intraspecific mutualism in humans, where individuals
plastically choose the role they wish to play. Model 2 thus follows
the same principles as Model 1, except that the relative density of
responders is assumed to be always equal to its ecological equilib-
rium value. In complementary simulations (see SI), we undertake
the opposite assumption, where both an individual’s trading class
and his offer are genetically encoded and evolve through natural
selection; this opposite assumption is adapted for instance to the
case of a mutualistic interaction between two different species.
Details of the analyses are presented in SI, and simulation results
in Figure S1. Here, we present the four major results stemming
from the analysis of Model 2.

(1) In a resident population of stingy proposers (p < 0.5),
more generous proposers are able to invade, whereas less-
generous ones can never increase in frequency. (2) In a population
of generous proposers (p > 0.5), less-generous proposers are able
to invade, whereas more generous ones can never increase in fre-
quency. (3) In a population of exactly fair proposers no other
strategy can increase in frequency. (4) Even though stable mix-
tures of generous and stingy proposers do exist, fair proposers
(p = 0.5) can always invade them. In consequence, fairness does
evolve from any initial state, and is evolutionarily stable. Inter-
estingly, in contrast with Model 1, this result is independent of
the frequency and effects of mutants. Simulations are in line with
analytical results (Fig. S1).

This outcome is relatively easy to grasp intuitively. Consider
first a resident population of selfish proposers. At ecological equi-
librium, responders are limiting because they are disadvantaged
by the resource division, and the market thus favors more gener-
ous proposers (see Model 1). This goes on until the resource is
split exactly in two identical halves, and the frequency of each
trading class becomes identical. Conversely, in a resident popula-

tion of generous proposers, proposers are limiting, and the market
favors less-generous offers until the resource is also split exactly
in two halves. Fairness is the only equilibrium.

Note that Nowak et al. (2000) also implicitly consider a
situation in which proposers and responders are in equal density
(because individuals are randomly assigned a role with “equal”
probability). However, it would be a mistake to believe that this
explains the evolution of fairness in their model (as explained
in the introduction, it is explained by a restriction of parameter
space). In the absence of partner choice, only local strategic issues
matter, and the relative density of proposers and responders has
no impact on the evolutionary outcome. The equalization of role
density leads to fairness in our model only via partner choice.

In what follows, we describe two complementary models
aimed at testing the robustness and generality of our result. For
the sake of simplicity, in contrast with Model 2, these models
include an assumption of weak selection. We assume that the
effects of mutations are infinitesimally small, and we therefore
only consider the first-order effects of offers on payoffs.

MODEL 3: IMPERFECT RESPONDERS

Models 1 and 2 consider “perfect” responders able to discriminate
infinitely precisely among all offers. Under this assumption, only
slightly increasing one’s offer drastically increases one’s proba-
bility of finding a partner. This generates a strong incentive in
favor of generosity. In reality, however, responders are probably
not able to discriminate so precisely between offers. Furthermore,
they may not be informed of every offer available in the popula-
tion. The benefit of generosity could be reduced in either of these
cases.

In Model 3, we aim to verify that our results still hold under
this more realistic assumption. We build a quantitative model of
choice, in which a given proposer’s probability of finding a partner
is a continuous function of the difference between his own offer
and the average offer in the population. The analysis shows that
the essential mechanism promoting fairness still works (see SI
for details). Fairness evolves as long as a proposer’s probability
of being chosen as a partner increases sufficiently strongly with
his offer, and even if responders discriminate between offers with
limited precision.

MODEL 4: FAIRNESS IN ASYMMETRIC

INTERACTIONS

In the above sections, we considered an interaction in which
both partners benefit identically from each unit of a resource.
We showed that the evolutionarily stable resource division is then
symmetric (half-and-half). In many real-life cases, however, part-
ners’ payoffs are asymmetric. The evolutionarily stable resource
division might then also be asymmetric. To study this more gen-
eral case, we developed a further model.
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Consider an interaction between a proposer and a responder,
in which the responder gets a fraction p of the resource. The
proposer receives a payoff of Pp = bp(1 − p) − cp, and the
responder one of Pr = brp − cr, where bi is the marginal benefit
of each resource unit and ci the cost of the social interaction for
individuals of type i.

The analysis of Model 4 (see details in SI) shows that the half-
and-half split obtained in previous models is a special case of a
more general outcome. In both symmetric and asymmetric interac-
tions, evolution leads to resource divisions that “equalize” the total
payoff of individuals (i.e., such that Pp = Pr). Mathematically, the
evolutionarily stable offer is thusp∗ = (bp + cr − cp)/(bp + br ).
In the special case in which payoffs are symmetric (bp = br and
cp = cr) this corresponds to an equal split, but this need not be the
case in general. For instance, if responders have to invest more
energy to produce the common resource (cr > cp), this initial
investment ends up being fully compensated by an asymmetric
division of the resource in their favor (i.e., p∗ > 0.5), and vice
versa.

Interestingly, the asymmetric case helps to highlight the di-
vergences between the outcome of evolution in a biological mar-
ket and social optima. Assume for instance that proposers gain
more for each unit of resource they receive (bp > br). The sum of
individual payoff would be maximized if proposers received the
entire resource (p = 0); in economics, this is defined as the “so-
cial optimum.” But evolution in a biological market does not lead
to such a biased distribution. On the contrary, if proposers gain
more from each unit of a resource, they receive fewer resources
at equilibrium (p∗ > 0.5), and this is socially suboptimal (i.e., it
does not maximize the total payoff).

MODEL 5: FAIRNESS ON THE SIDE OF RESPONDERS

In Models 2–4, proposers evolve a preference for fairness owing
to a competition for the access to responders. Responders, on
the other hand, merely pick the best offer available and do not
express concern for fairness. Selection may nevertheless promote
a preference for fairness on the side of responders if there is also
a competition “among responders” for the access to proposers.
Such a competition is likely to take place in real-life settings.
When a responder meets a proposer, she can either accept him
as a partner, or reject his offer and wait until she (hopefully)
comes across a more generous proposer in the future. In the latter
case, she runs the risk of either ending up without any partner
because they have all been paired in the meantime, or of being
forced to eventually accept a lower offer than the one she initially
rejected. In other words, competition among responders creates an
“urgency” effect. Responders might be better off not assessing all
available offers, but instead setting a minimum request: a resource
division that they are ready to accept without comparing further
offers.

Model 5 aims to capture this phenomenon. Consider again a
population with np proposers and nr responders, and consider a
pairing procedure with two stages. In the “first stage,” pairs are
formed randomly, with one proposer and one responder (some
individuals remain unpaired if np (= nr). In each pair, the proposer
makes an offer, p, that the responder accepts or rejects (here, the
rejection of offers is hence explicitly considered). If the offer is
accepted, it is implemented; otherwise the pair of players moves
on to the second pairing stage. The “second stage” involves the
individuals that have not been successfully paired in the first,
and is strictly equivalent to the single stage of previous mod-
els: each responder chooses the most generous proposer among
those available. Proposers are characterized by their offer (p), and
responders by the minimum offer they are ready to accept in the
first stage (q). To generate a selective pressure on the responder’s
side, we need to introduce some background variability among of-
fers, and we do so by assuming that proposers tremble and deviate
slightly from their expected offer (see also Noë and Hammerstein,
1994).

Ultimately, we aim to study the joint evolution of p and q
when the relative density of responders, r, varies dynamically
with payoffs. To study this complex process, we used stochastic
individual-based simulations, under the assumption that individ-
uals’ offer, request, and trading class are all genetically encoded
(see SI for details). We also developed simple mathematical ar-
guments (detailed in SI) to describe (1) the evolution of q when p
and r are held constant, and (2) the evolution of p when q and r are
held constant. Here, we present the results of these simulations,
together with their interpretation in the light of mathematical
arguments.

Both fair offers and fair requests evolve in simulations under
a wide range of mutation parameters (Figs. 2 and S2). This can be
understood in the following way. Consider a resident offer p fixed
in the population (plus some background deviation due to slight
trembling). On one hand, if p is initially strictly lower than 0.5,
responders are limiting; if a responder moves on to the second
stage of pairing, she can expect to obtain a little more than p
(because the most generous trembles are picked preferentially).
The evolutionarily stable strategy is therefore to accept only offers
at least slightly larger than p in the first stage (q > p). This in turn
generates a selective pressure toward increasing offers, because
proposers must compete to attract partners. This joint increase
of q and p goes on until p = 0.5, and responders are no longer
limiting. On the other hand, if p is initially strictly larger than 0.5,
proposers are limiting, and selection simply leads to a reduction of
offers, because any offer is eventually accepted. This also goes on
until p = 0.5 and proposers are no longer limiting. Finally, when
the resident offer is just fair (p = 0.5), proposers and responders
are in equal density, and the best strategy for responders is to
accept exactly q = 0.5 in the first stage, because 0.5 is exactly
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Figure 2. Joint evolution of proposers’ offer (A) and responders’ request (B) in simulations, when the density of proposers and responders
varies freely. Each curve is an average across 10 independent simulation runs. All parameters are like in Figure 1. In black, mutations
are rare and 90% have a weak effect. In red, mutations are rare and 90% have a strong effect. In green, mutations are frequent and
90% have a weak effect. In blue, mutations are frequent and 90% have a strong effect. Trembles occur with probability 1; their effect is
normally distributed with standard deviation 5 × 10−2. Evolution leads to fair proposers and predominantly fair responders in all cases.

what a responder can hope to accrue in the second stage. The
joint evolution of proposers and responders converges toward,
and stabilizes when both sides make fair choices (p = q = 0.5).

Note that Model 5 bears some similarity with models devel-
oped for the study of female mate choice (e.g., Janetos 1980; Real
1990); these models being themselves related to the more general
study of optimal stopping rules in decision theory, for example,
Chow and Robbins 1963). However, the biological foundations
of the two problems significantly differ. In mate choice models,
females generally do not compete for males, because each male
can fertilize a very large number of females. The biological costs,
and constraints, bearing upon choice are mostly a matter of time
and energy consumed. In contrast, in the present model, we are
interested in the consequences of competition among responders
(because each proposer can only interact with one responder).
The “cost of choice” we are primarily interested in is therefore
what we call the “urgency” effect that emerges from competition.
We show that it is sufficient to incite individuals to accept good
enough offers in the first place, rather than wait indefinitely for
the highest offer possible.

The energetic costs of choice should be considered in a more
comprehensive version of Model 5. On one hand, as we have
shown, fairness evolves when individuals are free to compare and
choose their partner. On the other hand, at the opposite extreme,
when switching partners is impossible like in the DG or UG, only
local strategic issues matter and the most powerful partner reaps
all the profits. In the intermediate case, when partner switching is
possible but costly, local strategic and global market mechanisms
should work together and yield an intermediate outcome. But
this is outside the scope of the present article, and remains to be
modeled.

Discussion
We consider a population constituted of two trading classes, and
we study the evolution of the division of a common resource
when pairs of individuals, one from each class, interact. Individ-
uals plastically choose the trading class they wish to belong to (in
complementary simulations we test a different assumption where
each individual’s trading class is genetically encoded). Those be-
longing to the first class are called “proposers”; they make public
offers regarding the division of the resource. Those belonging to
the second class are called “responders”; they choose the most
generous offer available on the market. Each individual is paired
with at most one partner. We show that a “fair” division of the
resource evolves. When the two classes are symmetric with re-
spect to payoffs, evolution leads to a half-and-half division, the
prime example of a fair split. When the two classes differ with
respect to payoffs, the evolutionarily stable division “equalizes”
the respective payoff of proposers and responders.

This result stems from a simple process based on two mecha-
nisms: market and demography. Assume for instance that respon-
ders are initially disadvantaged by the resource partition so that
their average payoff is lower than proposers’. In such a situation,
playing the role of a responder is not attractive and, if one’s so-
cial role is a plastic choice, responders then become scarce. This
rarity in turn grants responders an advantage on the market, as
they can now choose among many offers, which eventually leads
to the evolution of a more favorable partition of the resource. The
inverse process occurs if proposers are initially disadvantaged.
Splitting the resource into two identical halves (or more generally
in a way that equalizes the payoffs of the two classes) is thus
the only evolutionarily stable outcome. In economic terms, the
demographic feedback linking resource partition to the frequency
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of each trading class allows the market to “clear” (supply and
demand become equal), and this occurs when the price is just fair.

Interestingly, the same demographic feedback also takes
place if social roles are genetically inherited rather than plastically
chosen (an assumption undertaken in our simulations, Fig. 2A),
because competition then plays the role of plastic choice. If re-
sponders, for instance, are initially disadvantaged by the resource
partition, they are outcompeted by proposers and become rare,
this leads in turn to the evolution of a more favorable partition
of the resource, and vice versa. Our results are therefore also ap-
plicable if proposers and responders are members of two distinct
species involved in a mutualism.

In the case of human behavior, the egalitarian preferences
evolving under this process correspond to what is often called
“inequity aversion” in behavioral economics (Fehr and Schmidt
1999). They also match the commonsense notion of fairness: Ev-
erything else being equal, individuals should be treated equally,
and when everything else is not equal, distributions should com-
pensate for any initial disequilibrium. And yet, in both the
economic and the evolutionary literature, inequity aversion—or
fairness—is often assumed to be a product of group selection
operating at the level of cultural clusters (Boyd and Richerson
1982; Fehr and Fischbacher 2003; Choi and Bowles 2007; Haidt
2007; Bowles 2009; Boyd and Richerson 2009). Our approach
offers an alternative explanation, with markedly distinct predic-
tions. In particular, in contrast with group selection models, our
results entail that human beings should be indifferent to global
welfare. This is apparent, in particular, in the case of asymmetric
interactions, in which the evolutionarily stable resource division
predicted in our model can be far from the “social optimum” (the
split that maximizes the sum of the two partners’ payoffs). At
first, this result may seem surprising. And yet, as it happens, hu-
man moral intuitions are precisely surprising in this very respect
(Baron 1994). For instance, people refuse to sacrifice one indi-
vidual to save several others in the trolley dilemma (Greene et al.
2001), they show considerable opposition to the idea that medical
treatment should be distributed according to the utility of each
individual for the society at large (Marshall et al. 1999), they do
not wish to increase the global wealth of a society if is not based
on fairness (Mitchell et al. 2003), etc. The predictions derived
from market models are thus, at the very least, compatible with
important empirical patterns, and may even help us to understand
them.

The key selective lever favoring fairness in our models is
partner choice, and this is empirically sound. A range of re-
cent experiments have indeed demonstrated its importance as a
mechanism to enforce cooperative behaviors in humans. People
tend to select the most cooperative individuals in social encoun-
ters, and those who contribute less than others are gradually left
out of cooperative exchanges (Ehrhart and Keser 1999; Sheldon

et al. 2000; Barclay 2004; Coricelli et al. 2004; Page et al. 2005;
Hardy and Van Vugt 2006; Barclay and Willer 2007; Chiang 2010;
Sylwester and Roberts 2010). The current proximate importance
of partner choice thus strongly suggests that it might have played
a major selective role in the past, leading to the evolution of
fairness.

The market clearing observed in our model contrasts with
what goes on in other biological markets, and in particular in bi-
ology’s oldest market paradigm: the mating market (Bowles and
Hammerstein 2003; Hammerstein and Hagen 2005). Like the pro-
posers and responders of our models, males and females interact
to achieve a common good (reproduction), but the principles at
work in our models apparently do not apply in mating, as evo-
lution does not lead to the equalization of supply and demand
(sperm remains produced in excess). A number of factors might
explain this discrepancy (see Bowles and Hammerstein 2003).
First, the division of the common good in mating is constrained
by fecundation as each sex receives half the total benefits. Sec-
ond, a single male can sometimes monopolize a large number of
females, which proposers cannot do in our model. Third, neither
reputation nor commitments are easily achieved in mating, and
this limits the evolutionary stability of nuptial gifts and postzy-
gotic paternal care. Fourth, and perhaps most important, in con-
trast with responders, females not only choose males in function
of their offers (gift or care), but also to a large degree as a function
of their sexual attractiveness: sexy males benefit, in effect, from
a monopoly. All this combines to explain why mating markets do
not behave in accordance with the predictions derived from our
model.

In this article, we have neglected several important mech-
anisms that further models should investigate. For instance, our
models do not offer a mechanistic account of the plastic indi-
vidual decisions linking the resource division to the demography
of each trading class (we simply assumed that these decisions
collectively lead to the equalization of payoffs). We also did not
consider the fact that the best strategy might be plastic, consist-
ing in observing others’ offers before deciding upon one’s own,
thereby generating cultural dynamics of resource partition. Most
importantly, a mechanism that we neglected might be at the origin
of an important discrepancy between our egalitarian predictions
and psychological observations. We assumed that demographic
feedback—linking the social benefits accrued by one class to the
frequency of this class—operates freely. This unavoidably led to
the equalization of the payoff of each class and, in economic
terms, allowed the market to “clear” (i.e., offer and demand be-
came equal). In reality, however, every social role is not acces-
sible to everyone, at least not at the same cost, and not with the
same benefits; certain roles can be more “difficult” to play. In this
case, the demographic feedback does not operate freely, as certain
classes remain rare for “extrinsic” reasons, and this can prevent
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market clearing (see also Hammerstein and Hagen, 2005). In the
same way, in an interspecific mutualism where trading classes are
two species, one species might be maintained at a low (or high)
density for extrinsic reasons. In either case, inherently rare trading
classes could receive a larger payoff than others at evolutionary
equilibrium. In the human case, this could help explain the fact
that moral psychology is often at variance with egalitarianism
(e.g., Marshall et al. 1999; Konow 2003).

To conclude, let us go back to the opening. We began our
article by deploring the fact that most evolutionary approaches on
cooperation aim to understand how cooperation can exist at all,
and not what it should actually look like, and we claimed to rem-
edy this. What we did not say, however, is that understanding how
cooperation “looks” raises a difficult game-theoretic question: the
question of equilibrium selection. Models of direct (or indirect)
reciprocity do indeed show that cooperation is possible at equi-
librium, but they also show that many different quantitative levels
of cooperation are possible (in game theory, this is known as the
folk theorem; see e.g., Aumann and Shapley 1994). This profound
indeterminacy of equilibrium can be seen as a symptom of the fact
that reciprocal cooperation (in a large sense) fundamentally raises
problems of coordination, and that coordination problems often
have multiple solutions. Even though equilibrium selection has
primarily preoccupied theorists in economics (e.g., Harsanyi and
Selten 1988), two mechanisms inspired by evolutionary theory
have been proposed to select among equilibria. The first relies
on the second condition of evolutionary stability (accounting for
the efficiency of mutants in front of themselves: Maynard Smith
and Price 1973) and tends to favor utilitarian equilibria, maxi-
mizing the sum of all payoffs (e.g., Fudenberg and Maskin 1990;
Binmore and Samuelson 1992; André and Day 2007; or see also
de Mazancourt and Schwartz 2010, in an explicit trading con-
text). The second relies on group selection and also tends to favor
utilitarian outcomes (Boyd and Richerson 1990). We suggest that
partner choice could be a third mechanism, favoring ‘fair” but not
necessarily utilitarian outcomes. If this intuition is valid, then it is
essential to understand which equilibrium selection mechanism
is most likely to be found in real-life settings, as their respective
predictions differ markedly.
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J. -B. ANDRÉ AND N. BAUMARD

games (vol 273, pg 2565, 2006). Proc. R. Soc. Lond. B 273:3131–
3132.

Janetos, A. C. 1980. Strategies of female mate choice – a theoretical-analysis.
Behav. Ecol. Sociobiol. 7:107–112.

Johnstone, R. A., and R. Bshary. 2008. Mutualism, market effects and partner
control. J. Evol. Biol. 21:879–888.

Konow, J. 2003. Which is the fairest one of all? a positive analysis of justice
theories. J. Econ. Lit. XLI:1188–1239.

Lehmann, L., and L. Keller. 2006. The evolution of cooperation and altruism—
a general framework and a classification of models. J. Evol. Biol.
19:1365–1376.

Leimar, O., and P. Hammerstein. 2001. Evolution of cooperation
through indirect reciprocity. Proc. R. Soc. Lond. B 268:745–
753.

Marshall, G., A. Swift, D. Routh, and C. Burgoyne. 1999. What is and what
ought to be: popular beliefs about distributive justice in thirteen coun-
tries. Europ. Sociologic. Rev. 15:349–367.

Maynard Smith, J., and G. R. Price. 1973. The logic of animal conflict. Nature
246:15–18.

Mitchell, G., P. Tetlock, D. G. Newman, and J. S. Lerner. 2003. Experiments
behind the veil: structural influences on judgments of social justice.
Polit. Psychol. 24:519–547.
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