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ABSTRACT

In this article, we model analytically the evolution of mutation rate in asexual organisms. Three selective
forces are present. First, everything else being equal, individuals with higher mutation rate have a larger
fitness, thanks to the energy and time saved by not replicating DNA accurately. Second, as a flip side, the
genome of these individuals is replicated with errors that may negatively affect fitness. Third, and
conversely, replication errors have a potential benefit if beneficial mutations are to be generated. Our
model describes the fate of modifiers of mutation rate under the three forces and allows us to predict the
long-term evolutionary trajectory of mutation rate. We obtain three major results. First, in asexuals, the
needs for both adaptation and genome preservation are not evolutionary forces that can stabilize mutation
rate at an intermediate optimum. When adaptation has a significant role, it primarily destabilizes mutation
rate and yields the emergence of strong-effect mutators. Second, in contrast to what is usually believed, the
appearance of modifiers with large mutation rate is more likely when the fitness cost of each deleterious
mutation is weak, because the cost of replication errors is then paid after a delay. Third, in small pop-
ulations, and even if adaptations are needed, mutation rate is always blocked at the minimum attainable
level, because the rate of adaptation is too slow to play a significant role. Only populations whose size is
above a critical mass see their mutation rate affected by the need for adaptation.

WHAT is the optimum fidelity when living organ-
isms are replicating their own information? This

basic question is the keystone of self-replicating sys-
tems and the basis of evolutionary process. An organism
somewhat fit to its environment either can be prudent
and replicate unchanged or, improvements being cer-
tainly possible, can take a risk and innovate, most often
through random modifications. The first step toward
this general question is the study of the evolution of
error rate at replication (mutation rate) in the case of
asexuals. Heritable variation of mutation rate has in-
deed been documented in numerous asexual microbes
(Sturtevant 1937; LeClerc et al. 1996; Sniegowski

et al. 1997, 2000; Mansky and Cunningham 2000;
Oliver et al. 2000; Denamur et al. 2002; Richardson
et al. 2002; Shaver et al. 2002). Therefore, mutation
rate is subject to alteration through the action of nat-
ural selection. In the following, we introduce the current
theory on mutation rate evolution in asexual organ-
isms. We then point out important features requiring
enlightenments.

The general framework undertaken in numerous
preceding works, as well as in the present one, is game

theory. Let us consider a population fixed for a given
mutation rate (the resident) and introduce a rare var-
iant bearing a modifier gene affecting replication ac-
curacy. The aim of analyticalmodels is to predict the fate
of the variant and ultimately to find a resident mutation
rate in which no variant can invade (i.e., an evolution-
arily stable mutation rate; Maynard-Smith 1982). In
this purpose, the fitness of modifier-bearing individuals
must be calculated. This fitness may be affected directly
by the mutation rate modifier. For instance, owing to
the thermodynamic cost of replication fidelity, a modi-
fier increasing mutation rate may have a positive effect
on fitness (Dawson 1998, 1999). In addition, fitness is
also affected indirectly by the carriage of the modifier,
through linkage disequilibrium with other loci. This in-
direct effect, themost peculiar effect of mutation rate, is
double sided. Consider the case of amodifier increasing
mutation rate. On one side, when they replicate their
DNA, modifier-bearing individuals generate more un-
favorable errors than wild-type individuals. Therefore,
the modifier allele is positively linked with deleteri-
ous mutations, which generates an indirect fitness cost.
However, on the other side, modifier-bearing individu-
als are also more likely to generate favorable errors at
replication, which generates an indirect fitness benefit
for the modifier. The aim of theoretical models is to
measure the respective strength of these three effects.
At first, one could get the impression that mutation

rate evolution depends simply on the average effect of
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DNA alterations. If, in expectation, random mutations
increase fitness, then mutation is good; if they decrease
fitness then it is bad. Mutation rate evolution would
then be a trivial issue. Indeed, even when a population is
in the course of adaptation, the vast majority of muta-
tions are still deleterious. Therefore, in expectation,
altering an individual’s DNA bymutation always leads to
a reduction of its fitness. An individual whomust choose
between producing mutated or nonmutated offspring
should always prefer nonmutated ones, and mutation
rate should be fixed at the minimum one possible.

Theoretical models have shown that this simple an-
swer is not accurate because the indirect cost of deleteri-
ous mutations and the indirect benefit of advantageous
ones are not symmetric effects. Consider again amodifier
increasing mutation rate. In a large asexual population,
any individual carryingmore than theminimumnumber
of deleterious mutations ultimately leaves no descend-
ants; i.e., it is evolutionarily dead (Fisher 1930, p. 136).
Therefore, the indirect cost of the modifier is charac-
terized by a slight increase in the number of ‘‘dead’’
offspring generated by modifier-bearing individuals
(Leigh 1970; Dawson 1998, 1999; Johnson 1999a).
The indirect effect of beneficial mutations is different.
When a new favorable mutation appears, it rises in
frequency until complete fixation and, in the absence
of recombination, yields the simultaneous fixation,
by hitchhiking, of the genetic background in which it
appeared (Maynard-Smith and Haigh 1974). In the
following we call this phenomenon a selective sweep. This is
important in the evolution of mutation rate, because a
modifier increasing mutation rate is more likely than
at random to generate beneficial mutations and reach
fixation with them. Therefore, selective sweeps generate
a very strong indirect benefit for the modifier, and this
benefit is much stronger than the cost of deleterious
mutations (see, for instance, Leigh 1970).

To describe the long-term fate of a modifier, Leigh
(1970) and Johnson (1999a) consider a population for
a large number of generations and assume that a selec-
tive sweep occurs with a constant probability K per
generation (e.g., after the environment has changed).
The expected frequency of a modifier gene after T gen-
erations is then the product of selection due to dele-
terious mutations along the T generations times the
selection owing to the KT selective sweeps that have oc-
curred. From this analysis, Leigh (1970) and Johnson
(1999a) find a resident’s mutation rate in which no
modifier’s expected frequency can increase. They show
that, in the absence of recombination, the evolution-
arily stable strategy is to generate errors at the exact
same rate that the environment is changing.

However, this approach involves several assumptions
that should be relaxed for a more profound analysis.
First, to be able to measure the selection upon the mod-
ifier in each generation, Leigh (1970) and Johnson
(1999a) had to assume that the modifier stays rare in

all the considered generations. This is reasonable for
a weak-effect modifier in an infinite population (Leigh
1970) or in a finite sexual population because the strong
recombination rate between modifier and advantageous
mutations prevents important modifiers’ increases dur-
ing selective sweeps (Johnson 1999a). In a finite asexual
population, however, each selective sweep is a bottleneck,
reducing polymorphism everywhere in the genome,
including at the modifier locus. Particularly, if the sweep
is the fixation of a single advantageous mutation, then
the final modifier’s frequency is either one or zero,
which represents a strong variation relative to an initial
low frequency (see discussion on this point by Johnson
1999a). Therefore, in a finite asexual population, the
modifier cannot be assumed rare along all the genera-
tions considered, which implies important modifications
of the model.

Second, Leigh (1970) assumes that the rate of selec-
tive sweeps is controlled solely by the environment.How-
ever, in a finite population the generation of genetic
polymorphism also affects the frequency of adaptation
events. In other words, the frequency of selective sweeps
relies both on external factors, i.e., the pace of environ-
mental changes, and on internal factors, i.e., the pop-
ulation size and mutation rate. As a first consequence,
the evolution of mutation rate might depend on pop-
ulation size. This has been observed in simulations of
the dynamics of strong-effect modifiers (Taddei et al.
1997; Tenaillon et al. 1999); a convincing model of
mutation rate evolution should therefore account for
this effect. As a second consequence, the fate of modi-
fiers may rely on the resident mutation rate itself, which
should change importantly the long-term evolutionary
trajectories of mutation rate.

In this article, we describe the evolutionary trajectory
of mutation rate owing to the recurrent appearance and
fixation of weak-effect modifiers. In this aim, we first
develop analytical tools to measure the effect of each
selection component on the modifier’s frequency (cost
of accuracy, deleterious mutations, and adaptive mu-
tations). For clarity, the cost of accuracy is described
only in appendix b. Second, we develop three complete
models of mutation rate evolution corresponding to
different ecological scenarios; each of these models is
described in the main text of this article (models A, B,
and C). All models are analyzed under two distinct hy-
potheses regarding the interference between adaptive
and deleterious mutations (hypotheses 1 and 2). Hy-
pothesis 1 is described in themain text, and hypothesis 2
is developed in appendix a.

MEASURES OF SELECTION COMPONENTS

Here the two indirect evolutionary forces acting on
mutation rate are described separately. The direct effect
of mutation rate, owing to the cost of replication ac-
curacy, is described in appendix b.
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Deleterious mutations: Let us first describe the in-
direct cost of a high mutation rate, owing to the gen-
eration of deleteriousmutations. Modifiers are assumed
to stay rare in all the generations where deleterious
mutations affect their frequency. Note that this is not
equivalent to assuming that they stay rare in all gen-
erations (Leigh 1970; Johnson 1999a), as is made clear
later on.

An asexual and haploid population of constant size N
and discrete generations is considered. The population
is first fixed for wild-type individuals, generating errors
in DNA replication at a rate m per base pair. Mutations
are deleterious to fitness when they affect one among L
base pairs, hence U ¼ mL is the genomewide deleteri-
ous mutation rate. A rare modifier gene, appearing by
random mutation from wild-type individuals, is in fre-
quency pð0Þ>1 at time t ¼ 0 and yields a base pair mu-
tation rate m9 ¼ m1 d and a deleterious mutation rate
U 9 ¼ U 1 dL.

Before the appearance of the modifier, the wild-type
population is at a stationary distribution regarding the
number of deleterious mutations per individual. As-
suming that no deleterious mutation ever reaches fix-
ation, the average relative fitness at this equilibrium
is �w ¼ expð�U Þ (Kimura and Maruyama 1966). This
equilibrium is not affected by the appearance of a rare
modifier. Let us consider the modifier lineage. At
mutation–selection balance, it will ultimately have an
average fitness �w9 ¼ expð�U 9Þ. The modifier’s fre-
quency will hence be multiplied in expectation by
�w9=��w in each generation (where ��w is the average relative
fitness in the population). If the modifier is rare and
of relatively weak effect, then ��w is controlled only by
wild types and is given by ��w ¼ �w ¼ expð�U Þ; hence the
modifier’s frequency will follow

E ½pðt1 1Þ� ¼ pðtÞ � expð�dLÞ; ð1Þ

where E ½X � stands for the expectation of the random
variable X and pðtÞ is the realized frequency of the
modifier in generation t.

However, Equation 1 is valid only after the modifier
has reached its own stationary distribution, which is not
the case immediately after appearance (see Johnson
1999b). Indeed, the modifier initially appears within
the wild-type background with an expected fitness �w ¼
expð�U Þ. To circumvent this problem we adopt a
slightly different approach.

Let us first follow the number of modifier individuals
that carry none but the minimum number of deleteri-
ous mutations (called nondeleterious modifiers in the
following). This number in generation t is written n0ðtÞ,
while the number of modifiers carrying k deleterious
mutations is nkðtÞ, and the total number of modifiers
is nðtÞ. At appearance, modifiers are drawn randomly
from the resident population. Assuming that the resi-
dent population is at stationary distribution and that

every deleterious mutation has the same multiplicative
effect on fitness (1� sd), the proportion of individuals
from the resident populationwho carry none but themin-
imum number of deleterious mutations is expð�U =sdÞ
(Haigh 1978). Therefore, at appearance, the number
of nondeleterious modifiers has the expectation

E ½n0ð0Þ� ¼ expð�U =sdÞ � nð0Þ: ð2Þ

Let us now derive the expectation of the number of
nondeleterious modifiers in any generation t1 1, con-
ditional on the realized number of nondeleterious
modifiers being n0ðtÞ in the previous generation. This
gives E n0ðt1 1Þjn0ðtÞ½ � ¼ n0ðtÞ � expð�U 9Þ=��w. Assuming
that modifiers stay rare in all generations, the average
relative fitness in the population is determined solely by
the resident and is a constant ��w ¼ �w ¼ expð�U Þ. In
consequence, the effect of selection is linear, and the
conditional expectation of n0ðt1 1Þ can be averaged
over all realized values of n0ðtÞ, giving the unconditional
expression E n0ðt1 1Þ½ � ¼ E n0ðtÞ½ � � expð�dLÞ. Solving
this recurrence equation, and using Equation 2 for
E n0ð0Þ½ �, we derive the expected number of nondelete-
rious modifiers as a function of time,

E ½n0ðtÞ� ¼ expð�U =sdÞ � expð�dL � tÞ � nð0Þ: ð3Þ

Dividing by the constant total population size, N, this
finally gives the expected frequency of nondeleterious
modifiers,

E ½p0ðtÞ� ¼ expð�U =sdÞ � expð�dL � tÞ � pð0Þ: ð4Þ

However, we might need also to follow the total fre-
quency of modifier individuals (pðtÞ). From Equation 3,
this quantity can be deduced when the modifier sub-
population reaches its own mutation–selection station-
ary distribution. By definition, at stationary distribution,
the ratio of the expected number of modifiers of each
deleterious class relative to the expected number of
modifiers of the zero class is constant. This gives the
condition

"k;
E ½nkðt1 1Þ�
E ½n0ðt1 1Þ� ¼

E ½nkðtÞ�
E ½n0ðtÞ�

; ð5Þ

where nk is the number of modifiers carrying k delete-
rious mutations (modifiers of the k-class). From Equa-
tion 3, we have E n0ðt1 1Þ½ � ¼ E n0ðtÞ½ � � expð�dLÞ, and
Equation 5 then becomes

"k; E nkðt1 1Þ½ � ¼ E nkðtÞ½ � � expð�dLÞ: ð6Þ

In other words, at stationary distribution, the number
of modifier individuals of each deleterious class varies
according to the same rate [i.e., it is multiplied by
expð�dLÞ in each generation]. Following Haigh

(1978), let us then assume that the number of new
deleterious mutations per individual per generation
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follows a Poisson distribution of expectation U 9 and
express the expected number of modifiers of the k-class
in generation t1 1, conditionally on the realized number
of modifiers of each class in the previous generation
[given by the vector nðtÞ]. This gives

E nkðt11ÞjnðtÞ½ �¼ 1
��w

Xk
j¼0

ð1� sdÞk�jexpð�U 9ÞU 9j

j !
nk�jðtÞ:

ð7Þ

Assuming again that the modifier stays rare in all gen-
erations, the average fitness in the population is con-
trolled solely by the resident and is the constant ��w ¼
expð�U Þ. Therefore, here again, the effect of selection
is linear, and Equation 7 can be expressed uncondition-
ally as

E ½nkðt1 1Þ� ¼ expð�dLÞ �
Xk
j¼0

ð1� sdÞk�jU 9j

j !
E ½nk�jðtÞ�:

ð8Þ

Introducing Equation 8 into condition (6) yields the
following condition for the stationary distribution to be
reached:

"k; E ½nk � ¼ E ½n0� �
ðU 9=sdÞk

k!
: ð9Þ

To obtain the expected total number of modifiers at
stationary distribution, E ½n�, Equation 9 is summed over
all k, giving E ½n� ¼ E ½n0� �

P1‘

k¼0 ðU 9=sdÞk=k!
� �

, which
simplifies to

E ½n� ¼ E ½n0� � expðU 9=sÞ: ð10Þ

Therefore, the expected total number of modifier
individuals in any generation at stationary distribution
can be found as a function of the expected number of
nondeleterious modifiers at the same generation. Fi-
nally, from Equations 3 and 10 the expected total number
of modifiers in the population can be written as a func-
tion of time,

E ½nðtÞ� ¼ expð�dL � tÞ � expðdL=sdÞ � nð0Þ: ð11Þ

Dividing by the total population size, N, this finally
gives the expected total frequency of modifiers as a
function of time, once the modifier subpopulation has
reached stationary distribution:

E ½pðtÞ� ¼ expð�dL � tÞ � expðdL=sdÞ � pð0Þ: ð12Þ

Note that this derivation is valid even if the number of
modifiers is very low at appearance (e.g., even if a single
modifier is initially present). Modifiers may be affected
by drift and often be lost, but the expectation of their
frequency is always given by Equation 12. The only
assumption needed for this result to hold is that the

average relative fitness in the population is the constant
expð�U Þ, which implies (i) that the total population
size is large and (ii) that the modifier stays rare in all
generations.

For comparison, let us now take the logarithm of
Equation 12,

lnE ½pðtÞ� ¼ ln pð0Þ � dLðt � 1=sdÞ; ð13Þ

and contrast it with the logarithm of the modifier’s fre-
quency obtained from Equation 1 (i.e., supposing that
modifiers reach stationary distribution immediately after
appearance):

lnE ½pðtÞ� ¼ ln pð0Þ � dL � t: ð14Þ

The log-slope of the modifier’s frequency with time is
the same in both cases [(13) and (14)] except that
Equation 13 is shifted 1=sd generations back. Owing to
the delay before reaching mutation–selection balance,
it is merely as if the cost of deleterious mutations was
paid only 1=sd generations after appearance (see also
Johnson 1999b). For instance, if deleterious mutations
are lethal (sd ¼ 1), then the shift is only of one generation
because the mutation–selection balance is attained in a
single generation. Both expressions are compared with
stochastic individual-based simulations (Figure1).Equa-
tion 14 assumes that modifiers have an average fitness

Figure 1.—The average modifier’s frequency, plotted as a
function of the number of generations after appearance, ac-
cording to analytical models (thin lines) and to stochastic
individual-based simulations (thick lines). The generation of
deleterious mutations affects the modifier’s frequency; the
cost of accuracy and the existence of adaptive mutations
are not considered. Simulations are performed with a popu-
lation size N ¼ 106 and are averaged over 104 runs. They are
performed in two cases with different costs of deleterious
mutations: sd ¼ 0:05 (thick solid line) and sd ¼ 0:01 (thick
shaded line). The result of the analytical model neglecting
the cost delay (Equation 14) is given by the dashed line.
The results of the analytical model with delay (Equation
13) are given by the two thin lines, for each cost of deleterious
mutation (sd ¼ 0:05 and 0.01, respectively, thin solid and thin
shaded lines). Initial modifier’s frequency is pð0Þ ¼ 10�2;
wild-type mutation rate is m ¼ 10�6; modifier’s effect is
d ¼ 10�6; and the deleterious genome has size L ¼ 104.
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�w9 ¼ expð�U 9Þ immediately after introduction whereas
they have the average fitness of wild types. As a conse-
quence it yields an underestimation of the expected
frequency of modifiers when they increase mutation rate
(d. 0) andanoverestimationwhen they reduce it (d, 0;
not shown). Equation 13 provides a correct approxima-
tion, but only when the modifier has reached stationary
distribution, which occurs a certain number of gener-
ations after introduction, this number being inversely
proportional to the effect of deleterious mutations.

Adaptation:We then examine the effect of adaptation
on the expected frequency of a modifier. Let us assume
that a selective pressure is present in the population,
requiring the fixation of one adaptive mutation arising
at one among l base pairs (u ¼ ml is the advantageous
mutation rate). In this article, a selective sweep is as-
sumed to be the total fixation of a single mutant (see
also Johnson 1999a); i.e., the population size is small
with regard to the average advantageous mutation rate
(upND>1, where �p is the average fixation probability of
an advantageous mutant, �u is the average advantageous
mutation rate, and D is the number of generations
needed for the fixation of the advantageous mutation
to occur). Hence the simultaneous or successive gen-
eration of several advantageous mutants during one
selective sweep is not considered.

At this point, two alternative hypotheses need to be
envisaged. The first hypothesis (hyp. 1) assumes that
the beneficial mutations are much stronger than the
deleterious ones and hence that selective sweeps in-
volve random individuals, irrespective of the number of
deleterious mutations they carry. According to this hy-
pothesis, the expected total frequency of modifier
individuals fE pðtÞ½ �g needs to be considered as they
may all participate in selective sweeps; this frequency is
evaluated from Equation 12. The second hypothesis
(hyp. 2), known as the ‘‘ruby in the rubbish’’ hypothesis
(Peck 1994; Orr 2000; see also Bachtrog and Gordo
2004), assumes that beneficial mutations can fix only in
nondeleterious backgrounds. This is true provided that
deleterious mutations are stronger than advantageous
ones. According to this hypothesis, the expected fre-
quency of nondeleterious modifiers fE p0ðtÞ½ �g is the
only relevant quantity; it is evaluated from Equation 4.
These two hypotheses should be seen as two extremes of
a continuum; in the general case indeed, the average
fixationprobabilityofanadvantageousmutationisquan-
titatively reduced by the presence of deleterious mu-
tation(s) in the same genome (Johnson and Barton
2002), which yields an interference between the back-
ground (modifier or not) and the probability to gen-
erate a selective sweep. However, this general case being
extremely difficult to model, the two extremes are con-
sidered instead (hyps. 1 and 2). In the following the
methods employed are detailed only for the first
hypothesis; the analysis of the ruby in the rubbish case
is detailed in appendix a.

Under hypothesis 1, conditional on the presence of
a selective pressure, the expected probabilities that in
generation t the modifier fin expected frequency
E pðtÞ½ �g and wild-type subpopulations generate an
adaptive mutation destined to fix are, respectively,

Mt ¼ Np � u9 � E ½pðtÞ� ð15Þ

and

Rt ¼ Np � u � ð1� E ½pðtÞ�Þ; ð16Þ

where p is the average fixation probability of an ad-
vantageous mutation occurring in the modifier or wild-
type background.

MODELS AND ANALYSES

Let us now describe the evolution of mutation rate
under the three selective forces. For clarity, however, the
models presented in the text do not include the cost of
fidelity. They are ‘‘neutral’’ models of mutation rate
evolution ( Johnson 1999a), which provide the best
comprehension of indirect selection. The complete
models including the cost of fidelity are described in
appendix b (but their principal results are presented in
the text). We also recall that hypothesis 1 is considered
only in the text, hypothesis 2 being considered in
appendix a.
Here we present models valid for weak selection

(d � 0). Recall that the effect of deleterious mutations
on the frequency of modifiers (Equation 12) is valid
only at mutation–selection balance. Selective sweeps
must therefore not occur before this equilibrium is
reached by the modifier subpopulation. Our model is
then valid if selective sweeps are rare and if the cost of
deleterious mutations is relatively high (rapid conver-
gence to mutation–selection equilibrium). Remember
finally that, in this article, a selective sweep is assumed
to be the total fixation of a single mutant (see also
Johnson 1999a), which is valid only if population size is
small with regard to the average advantageous mutation
rate (upND>1).
Leigh’s model: Leigh (1970) assumes that, each

generation, a selective sweep can occur with a fixed
probability K. The overall probability that a selective
sweep begins in generation t is Mt 1Rt (Equations 15
and 16). Let us take a modifier gene in total frequency p
in any focal generation, and let us assume that a selective
sweep begins in this focal generation; the expected
frequency of the modifier at the end of the selective
sweep (conditional on the occurrence of the sweep) is
M=ðM 1RÞ. From Equations 15 and 16, this yields

u9

�u
� p ¼ m9

m
� p; ð17Þ
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where m ¼ m1 dp is the average mutation rate per base
pair in the population. This is the classic result of Leigh
(1970, 1973), derived also in Johnson (1999a), giving
the expected variation of the frequency of a modifier
owing to one selective sweep. If the modifier is rare
(p>1), then the average mutation rate is controlled
only by wild types (m � m) and Equation 17 is simplified
to ðm9=mÞ � p.

Leigh (1970) aims at predicting the expected varia-
tion in a modifier’s frequency during a very large
number of generations T, where exactly KT sweeps
occur (see also Johnson 1999a). The expected fre-
quency of the modifier should be given simply by the
product of selection due to deleterious mutations along
the T generations times the selection owing to the KT
selective sweeps. The difficulty of this approach comes
from the fact that selection on the modifier depends
upon its own frequency, which varies in a stochastic
manner along the T generations. To circumvent this
problem, Leigh (1970) considers only infinite popula-
tions. Therefore, weak-effect modifiers can be assumed
to stay rare in the entire period of study. Note that in
Johnson (1999a), population size is finite, but recom-
bination is assumed to be frequent between modifiers
and beneficial mutations; therefore, the modifier re-
mains rare during the T generations as well. In Leigh
(1970), the expected frequency of the modifier in
generation T is given by

E ½pðT Þ� ¼ pð0Þ � m1 d

m

� �KT

�e�dL�T : ð18Þ

In this model, the delay in the cost of deleterious
mutations does not need to be considered but only the
long-term, per-generation, variation in the modifier’s
frequency owing to deleterious mutations does. Indeed,
replacing the effect of deleterious mutations e�dL�T

(Equation 18) by e�dLðt�1=sdÞ (from Equation 12) would
be equivalent merely to a variation of the initial fre-
quency of modifiers. As stated in the Introduction, from
Equation 18, Leigh (1970) finds the evolutionarily
stable mutation rate, as given by LmES ¼ K (see also
Johnson 1999a).

However, in an asexual finite population, if each
sweep is the fixation of a single advantageous mutation,
then the modifier’s frequency after each selective sweep
is either one or zero. As a result, after the first selective
sweep, mutation-rate polymorphism is lost and selec-
tion is absent. Therefore, the effect of indirect selection
on the modifier’s frequency cannot be measured as
exp �dLð Þ and m9=m in all generations, even for a weak
(or even neutral) modifier. In other words, selection
must not be measured through its long-term effect on
the modifier’s frequency (Equation 18; Leigh 1970;
Johnson 1999a) but through its effect on the probabil-
ity that the modifier is fixed or lost during the first
selective sweep.Our approach is therefore very different

from that of Leigh (1970) and Johnson (1999a), as
described in the following section.

Model A—constant rate of selective sweeps: In a first
model, let us follow Leigh (1970) and Johnson (1999a)
and assume that, each generation, a selective sweep can
occur with a fixed probability K.

After its introduction in generation 0, the modifier is
rare and its expected frequency varies according to
Equation 12. After an infinite number of generations,
a selective sweep has necessarily occurred; hence the
modifier is either fixed or lost. The modifier’s expected
frequency, E ½p‘�, is then given by the probability that it is
fixed, F‘. Let us first derive Ft (and Gt), the probability
that the modifier is fixed (and lost), in generation t and
then find F‘ as limt/‘Ft .

The modifier is assumed rare in generation 0 (and of
relatively weak effect); therefore, at any generation t,
preceding the first selective sweep, we have pðtÞ>1 and
u9pðtÞ>u 1� pðtÞð Þ. The average mutation rate in the
population is controlled only bywild types, and theprob-
ability that the modifier fixes during the first selective
sweep is m9=m, as described above (Equation 17). The
probabilities of fixation (Ft) and loss (Gt) of themodifier
are given by the following recurrence equations:

Ft11 ¼ Ft 1 ð1� Ft � GtÞK
m9

m
E ½pðtÞ�;

Gt11 ¼ Gt 1 ð1� Ft � GtÞK 1� m9

m
E ½pðtÞ�

� �
:

ð19Þ

Finally, from the hypothesis of the modifier’s rarity
and relatively weak effect, the probability that the
modifier is fixed in any generation is negligible relative
to the probability that it is lost (Ft>Gt). In other words,
the model describes a situation where the modifier is
lost most of the time but occasionally goes to fixation
from its original low frequency. The recurrence equa-
tion for Gt therefore simplifies to Gt11 ¼ Gt 1 ð1� GtÞK
and Gt is given by Gt ¼ 1� ð1� K Þt, the probability that
at least one selective sweep has occurred in t generations.
As a result, the recurrence equation for Ft becomes
Ft11 ¼ Ft 1 ð1� K ÞtK ðm9=mÞexpð�dL � tÞ � expðdL=sdÞ �
pð0Þ. The limit F‘ can therefore be expressed as a sum
from 0 to ‘. If the modifier is of weak effect, then
ð1� K Þ � e�dL , 1, and this sum converges, giving

F‘ ¼ K

1� ð1� K Þ � e�dL � m1 d

m
� expðdL=sdÞpð0Þ

¼ w‘ðm; dÞ � pð0Þ; ð20Þ

where w‘ðm; dÞ is the expected number of descendants,
after an infinite number of generations, of an individual
modifier with per base pair mutation rate m1 d in a
resident population with per base pair mutation rate m.
One can verify thatw‘ðm; 0Þ ¼ 1; e.g., the expectednum-
ber of descendants of a neutral variant is one. Amodifier
of mutation rate is considered favored by natural
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selection if its ultimate fixation probability is higher
than the fixation probability of a neutral allele, e.g.,
F‘ . pð0Þ�w‘ðm; dÞ. 1, and disfavored ifw‘ðm; dÞ , 1.

Developing w‘ðm; dÞ into a Taylor series around d ¼ 0
gives

w‘ðm; dÞ ¼ 11 d � @w‘ðm; dÞ
@d

jd¼0 1 oðdÞ:

Therefore the direction of selection on weak modifiers
is given by the sign of

SelðmÞ ¼ @w‘ðm; dÞ
@d

jd¼0;

giving after simplifications

SelðmÞ ¼ 1

m
� L

1� K

K
� 1

sd

� �
: ð21Þ

If SelðmÞ. 0 any rare mutant with small d. 0 in-
creases in frequency in expectation (e.g., selection
favors a higher mutation rate), while if SelðmÞ, 0
mutants increase in frequency if d, 0 (e.g., selection
favors a lower mutation rate).

If SelðmÞ ¼ 0 then the resident mutation rate m is a
singular strategy (Geritz et al. 1998); the second-order
derivative of w‘ðm; dÞmust be taken into account in the
Taylor development, giving

w‘ðm; dÞ ¼ 11 d2 � @
2w‘ðm; dÞ

@d2
jd¼0 1 oðd2Þ:

If

@2w‘ðm; dÞ
@d2

jd¼0 . 0;

then any weak modifier (d 6¼ 0) is favored by natural
selection; i.e., the singular strategy is not evolutionarily
stable. In contrast, if @2w‘ðm; dÞ=@d2jd¼0 , 0, then any
nonneutral modifier is counterselected; e.g., the singu-
lar strategy is an evolutionarily stable strategy (ESS)
(Maynard-Smith 1982).

From Equation 21, SelðmÞ. 0�m,mconv; if the
resident’s mutation rate is lower than a threshold, then
the direction of selection onmutation rate is positive. In
contrast, SelðmÞ# 0�m$mconv; when the resident’s
mutation rate is higher than the threshold, selection
favors a reduction of mutation rate. Evolution will
therefore tend to bring the resident’s mutation rate
toward a convergence stable strategy (Geritz et al. 1998)
mconv, which is found as the unique solution of
SelðmÞ ¼ 0 from (21), giving

Lmconv ¼
K

1� K 11 1=sdð Þ: ð22Þ

First, note that, owing to the delay, the convergence
stable mutation rate decreases with the cost of delete-

rious mutations, sd (Figure 2). Second, let us consider
the effect of K , the rate of selective sweeps. For low
K relative to the cost of deleterious mutations
(K ð11 1=sdÞ>1), the genomic mutation rate toward
which evolution is converging is approximately equal to
the rate of sweep (Lmconv � K ), which resembles the
classic result of Leigh (1970). However, if selective
sweeps are not extremely rare relative to the effect of
deleterious mutations, then (i) the expected amount of
time open for selection in favor of the reduction of the
mutation rate is short, and (ii) a newly introduced
modifier with large mutation rate is likely to experience
a sweep before having paid entirely the cost of gener-
ating deleterious mutations. For these two reasons, as
selective sweeps become more and more frequent, the
weight of deleterious mutations in the fate of modifiers
becomes increasingly negligible, especially if deleteri-
ous mutations are of weak effect. As a consequence, for
relatively large K, the mutation rate toward which
evolution is converging is higher than that predicted
by Leigh (1970).
The results are illustrated in Figure 3 by plotting the

convergence stable mutation rate as a function of the
rate of selective sweeps. Qualitatively, the results are
equivalent when the cost of replication accuracy is taken
into account. This cost is quantified through a param-
eter f representing the mutation rate where half of the
maximum fecundity is attained. Quantitatively, the
more important is the cost of accuracy (i.e., the larger
is f ), the larger is the convergence stable mutation rate
and the less influential is adaptation in the evolution of
mutation rate (see Figure 3).
Interestingly, and this also contrasts with Johnson

(1999a) and Leigh (1970),mconv is not an evolutionarily
stablemutation rate (Maynard-Smith 1982;Dieckmann
1997; Geritz et al. 1998). The second-order derivative of
w‘ðm; dÞ in mconv is

Figure 2.—Convergence stable mutation rate as a function
of the fitness cost of each deleterious mutation in model A,
under hypothesis 1 (advantageous mutations stronger than
deleterious mutations, Equation 22). The size of the deleteri-
ous genome is L ¼ 105, the frequency of selective sweeps is
K ¼ 10�4, and the cost of replication accuracy is absent
( f ¼ 0).
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@2w‘ðmconv; dÞ
@d2

jd¼0 ¼
L2

K

11 2

sd � K ð11 1=sdÞ2
� �

;

which is indeed strictly positive provided that K is small.
Therefore, when m ¼ mconv, selection favors any non-
neutral modifier. Hence evolution converges to the
singular strategy m ¼ mconv, but then any modifier can
invade. We will discuss more generally the instable
nature of mutation rate in a subsequent part of this
analysis.

Under hypothesis 2 (ruby in the rubbish) we obtain
very similar results (see appendix a): the singular
strategy is given by Lmconv ¼ K=ð1� K Þ and the second-
order derivative of w‘ðm; dÞ in mconv is positive (not
shown). The singular strategy is convergence stable but
not ESS stable. Surprisingly, here the cost of deleterious
mutations has no effect on the fate of modifiers. This is
because (i) the first cost of deleterious mutations—a
reduction of the efficient initial frequency of modifiers
by a factor e�U =sd—is the same as that paid by wild types,
and (ii) the second cost of deleterious mutations—a
factor e�dL each generation—is then paid by the modi-
fier immediately after introduction, whatever is the
effect of deleterious mutations.

Models B and C—internal control of the rate of
selective sweeps: The preceding model assumes, as in
Leigh (1970), that the average probability of selective
sweep per generation is a constant, which is valid if the
rate of environmental changes is the only limiting
factor. However, in a finite population, the frequency
of selective sweeps should also be limited by the
generation of adaptive mutations. Therefore, the rate
of selective sweep K should depend itself on the mu-
tation rate established in the population.

To take this mechanism into account, a new model is
built. A population is fixed for a resident mutation rate

m and amodifier withmutation ratem1 d is introduced.
Let us assume that the population is undergoing a
selective pressure (i.e., some mutations are adaptive)
with a probability S in each generation (the value of S
will be calculated later on, in two submodels). Condi-
tional on the existence of this pressure, and making the
same assumptions as in model A (modifier initially rare
and of relatively weak effect), the population has a
probability R ¼ Npl � m to generate a selective sweep in
each generation, where we recall that N is the popula-
tion size, p is the fixation probability of favorable
mutations, and l is the number of base pairs where mu-
tations are favorable. Therefore, the overall per gener-
ation probability of occurrence of a selective sweep is
the product S � R .

Following the approach of model A, we then derive
the probability that the modifier is ultimately fixed in
the population, F‘, by writing recurrence equations.
These equations are shown to be identical to Equation
19 with the constant rate of selective sweep, K, replaced
simply by the product S � R (not shown). Therefore, if
only weak-effect modifiers are present, the direction of
selection on mutation rate is given by

SelðmÞ ¼ 1

m
� L

1� S � R
S � R � 1

sd

� �
; ð23Þ

where we recall that the product S � R is not a constant
but actually depends on the mutation rate itself.

Model B—ecological scenario: This model describes
a population undergoing occasional environmental
changes, with a probability e per generation (e>1).
The population may then adapt by the fixation of one
adaptive mutation. Successive environmental changes
do not add up: if adaptation to a first change has not
occurred before the next change takes place, the second
change effaces the first and only one selective sweep is
required for adaptation. Before the modifier is intro-
duced in the population, the adaptive mutation rate is
u ¼ ml , and the probability that the population adapts
in any generation is RðmÞ ¼ Npl � m (conditional on
the presence of a maladaptation). At balance between
environmental changes and adaptation, the probability
per generation that the population is maladapted is
found as

SðmÞ ¼ e

RðmÞ1 eð1� RðmÞÞ: ð24Þ

Equation 24 remains true if a rare modifier of rela-
tively weak effect is present in the population; it can
therefore be introduced as an expression for S in
Equation 23, and the direction of selection onmutation
rate can be derived after simplification as

SelðmÞ ¼ 1

m
1� L

Npl

� �
� L

1

e
� 1

sd
� 2

� �
: ð25Þ

Figure 3.—Convergence stable mutation rate as a function
of the rate of selective sweep in model A, under hypothesis
1 (advantageous mutations stronger than deleterious muta-
tions, Equation 22). The size of the deleterious genome is
L ¼ 105; the cost of deleterious mutations is sd ¼ 0:05. The
cost of replication accuracy is characterized by f ¼ 0 (no cost
of accuracy, thick line), f ¼ 10�7 (thin line), or f ¼ 10�5

(dashed line).
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Slow environmental changes: First, we consider the case
where the environment is changing rarely ðð1=eÞ�
ð1=sdÞ. 2Þ:

1. If population size is large in relation to the size of
the deleterious genome (precisely if Npl .L), then
SelðmÞ. 0 for m,mconv and SelðmÞ, 0 for m.mconv,
mconv being the only solution of SelðmÞ ¼ 0, giving

mconv ¼
1

ð1=eÞ � ð1=sdÞ � 2

1

L
� 1

Npl

� �
: ð26Þ

The second-order derivative of w‘ðm; dÞ in mconv,
@2w‘ðmES; dÞ=@d2jd¼0, is strictly positive as long as
ð1=eÞ � ð1=sdÞ. 2 (not shown); hence mconv is con-
vergence stable but not ESS stable. Themodel is valid
only when each sweep is the fixation of one advan-
tageous mutant and never more; this should be true
around mconv also for the model to be correct, This
implies that Npl � mconv>1, which gives 11Npl=
L>1=e� 1=sd. This condition will be fulfilled, even
for large populations, provided that the rate of envi-
ronmental changes is low and the effect of deleteri-
ous mutations is not too weak. The results here are
qualitatively similar to the results found with a con-
stant rate of selective sweeps (model A). Evolution
converges to amutation ratemconv, but then any weak
modifier is favored.

2. If population size is small in relation to the size of the
deleterious genome (Npl #L), then SelðmÞ, 0 for
all m$ 0; selection always favors weak-effect modi-
fiers with lower mutation rate. Small-step evolution
converges tom ¼ 0, which is a locally stable strategy as
shown by the analysis of w‘ð0; dÞ (not shown).

In conclusion, let us sum up the effect of population
size in the case of slow environmental changes. Suppos-
ing that only weak-effect modifiers are present, evolu-
tion should tend to move the mutation rate close to a
value mconv, which is nil if Npl #L and strictly positive

if Npl . L. The threshold effect of population size is
illustrated in Figure 4a. As population size increases,
the convergence stable mutation rate fits more and
more the rate of environmental changes (if e>1, then
limN/1‘mconv � e=L, as in Leigh 1970).
When the cost of replication accuracy is taken into

account, the mutation rate cannot reach zero because
this implies an infinite cost (see appendix b). There-
fore, when population size is small, instead of blocking
at a nil mutation rate, the population reaches the
minimal error rate attainable without impairing too
much the replication process. Further, the more impor-
tant is the accuracy cost (i.e., the larger is the parameter
f ), the less influential are adaptive events and hence
population size in the evolution of the mutation rate.
This is illustrated in Figure 4. When the cost of accuracy
is present (Figure 4, b and c), the effect of population
size on mconv becomes continuous and moderate.
Rapid environmental changes: Second, we consider the

case where the environment is changing frequently
[ð1=eÞ � ð1=sdÞ, 2].

1. If population size is large in relation to the deleteri-
ous genome (Npl $L) then SelðmÞ. 0 for all m$ 0;
in this case selection always favors a higher mutation
rate, until infinity. This result is obtained also when
the cost of accuracy is taken into account. The reason
is that the higher is the resident mutation rate, the
higher is the probability of selective sweep, and thus
the lower is the importance of selection against
deleterious mutations. This positive feedback yields
the infinite escalation of mutation rate. However, the
model will then depart from its own limits of validity,
as the number ofmutants implied in a selective sweep
will become higher than one. In other words, the
generation of polymorphism will become less limit-
ing in the rate of selective sweeps. For that reason,
the frequency of sweeps will stop increasing linearly
with mutation rate and will begin to saturate. This

Figure 4.—Convergence stable mutation rate as a function of population size, in model B (Equation 26). The size of the del-
eterious genome is L ¼ 105; the size of the adaptive genome is l ¼ 10; the probability of fixation of adaptive mutations is p ¼ 0:1;
the rate of environmental changes is e ¼ 10�3; and the cost of deleterious mutations is sd ¼ 0:05. (a) The cost of accuracy is ne-
glected ( f ¼ 0); the population size has a threshold effect on convergence stable (CS) mutation rate. (b and c) The cost of ac-
curacy is taken into account with f ¼ 10�12 and 10�7, respectively; the population size has a continuous and weak relative effect on
CS mutation rate. Note that a, b, and c have different scales.
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effect has been called ‘‘clonal interference’’ in asex-
uals by Gerrish and Lenski (1998), even though it
is strictly equivalent to what was previously known
as the Hill–Robertson effect (Hill and Robertson
1966). Such saturation should reduce the positive
feedback of the rate of sweeps on the evolution of
mutation rate and probably yield a stabilization of
mutation rate. The evolutionary outcome of the
system in this case is impossible to predict from our
model. Note that the attained mutation rate should
not maximize any global parameter of the popula-
tion such as the rate of adaptation or the average
relative fitness.

2. In contrast, if population size is small in relation to
deleterious genome (Npl ,L), then

SelðmÞ, 0 for allm,mlim ¼ 1

21 ð1=sdÞ � ð1=eÞ
1

Npl
� 1

L

� �

(including m ¼ 0), while SelðmÞ. 0 for all m.mlim.
Furthermore we have SelðmlimÞ ¼ 0 and also

@2w‘ðmlim; dÞ
@d2

jd¼0 . 0

(not shown); mlim is an unstable singular strategy
(neither convergence stable nor ESS stable). If the
initial mutation rate is lower than mlim, then small-
step evolution converges to m ¼ 0, which is the local
evolutionary equilibriumof the system. In contrast, if
the initial mutation rate is higher than mlim, then
selection favors an ever-higher mutation rate, be-
cause the rate of sweep is accelerating. Here also, the
same results are obtained when the cost of accuracy
is taken into account. The mere difference, again, is
that the mutation rate never goes down to zero but
reaches instead the lowest attainable mutation rate
(such as in Figure 4, b and c). All results are
qualitatively equivalent under hypothesis 2 as well
(see appendix a for more details).

Model C—permanent selective pressure: This last
model describes a population that is never adapted to its
environment, because environmental changes are very
frequent and/or imply too many selective sweeps. The
probability that a selective pressure is present in any
generation is therefore S ¼ 1, and the direction of
selection on mutation rate can be derived from Equa-
tion 23 (not shown).

The outcome of this model is the same as that of
Model B in the case of rapid environmental changes
[ð1=eÞ � ð1=sdÞ, 2]. If Npl $L, then selection favors
an ever-higher mutation rate. Such as in model B, the
model will then depart from its own limit of validity as
several independent mutants will sweep together. If
Npl ,L, then the system is bistable with a threshold
resident mutation rate mlim (not shown). Here also, the
results are qualitatively identical when the cost of

accuracy is taken into account, except that, again, the
mutation rate never reaches zero but only the lowest
attainable value. All results are qualitatively equivalent
under hypothesis 2 as well (see appendix a)

Cost of accuracy and stability: We introduced the
cost of DNA replication, as a function of mutation rate,
in all the above models (models A, B, and C, each with
hypotheses 1 and 2). Apart from the results already
mentioned, the cost of accuracy has another important
effect. When the cost of accurate replication is taken
into account and is large enough (large f ), we showed
numerically that the second-order derivative of the fit-
ness function is then always negative around mconv. In
other words, the cost of accuracy stabilizes the evolu-
tionary trajectory of mutation rate at an ESS. The
antagonistic interplay of adaptation vs. deleterious muta-
tions cannot lead to a stabilization ofmutation rate, while
the interplay of deleterious mutations vs. accuracy costs
can. However, the significance of this stability must be
tempered, as we see in the following section.

The instability of mutation rate and the emergence
of mutators: Our model applies primarily for weak-
effectmodifiers, but interestingly it can also apply under
certain conditions to the case of strong-effect modifiers.
Indeed, the basic assumption required for the model to
work is that the average mutation rate in a population
is controlled merely by resident individuals and is not
influenced by modifiers. This hypothesis is always valid
for weak-effect modifiers. Further, it may remain valid
also in the case of strong-effect modifiers under two
conditions. First, the modifiers must be rare when they
first appear. Second, they must increase mutation rate,
so that they always diminish in frequency after appear-
ance, until the next selective sweep.

Let us then consider a modifier increasing the mu-
tation rate by d. In model A, under hypothesis 1, the
expected number of descendants of such a modifier is
given by

w‘ðm; dÞ ¼
K

1� ð1� K Þ � e�dL � m1 d

m
� expðdL=sdÞ

(fromEquation 20), and an equivalent expression can be
found in all cases, even when the cost of accuracy is con-
sidered.Recall that themodel ishighly stochastic and that
the modifiers’ fitness is triggered by the probability of
fixation of modifier individuals [F‘ ¼ w‘ðm; dÞ � pð0Þ,
where pð0Þ is the initial frequency of modifiers].

Interestingly, when the modifier has a strong effect
(large d), then its fitness can be approximated by
w‘ðm; dÞ ¼ K � ðm1 dÞ=m � expðdL=sdÞ, which increases
monotonously with d. This result also holds in allmodels
(A, B, and C, with both hypotheses, whatever may be the
cost of accuracy). Therefore, in all cases with no
exception, as modifiers become stronger and stronger,
their probability of fixation increases monotonously. In
consequence, a sufficiently strong modifier always exists
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whose probability of fixation is significant. More pre-
cisely, in evolutionary terms, modifiers whose fitness is
greater than one exist. In consequence, even if a locally
stable singular strategy exists, there never is a globally
stable mutation rate.

Strong-effect modifiers increasing mutation rate are
called mutators (Miller 1996). In model A, we can
show that the minimal relative strength [ðm1 dÞ=m]
required for a mutator to be favored is of the order of
magnitude of 1/K, the number of generations needed
for a sweep to arise. Therefore, in practice, mutators
may arise only when the rate of selective sweeps is large
enough. More interestingly, in model B, when popula-
tion size is very small, mutatorsmay theoretically emerge
but they must have an unreasonably strong effect to do
so. Therefore, in practice, theymay emerge only in large
populations. In other words, assuming that the effects of
modifiers have any given maximum, then the larger
the populations are, the more likely they are to be in-
vaded by mutators, while a small population will remain
stabilized at mconv.

DISCUSSION

In this article, we built an analytical model of muta-
tion rate evolution in an asexual population of finite
size. We undertook a game-theoretic approach. A resi-
dent mutation rate is considered and a rare variant
called a modifier is introduced, with a slightly different
mutation rate. Our model predicts the expected fre-
quency of the modifier after a large number of gen-
erations. If this frequency is larger than the initial
frequency the modifier is considered favored by selec-
tion and disfavored in the opposite case. Our model
is then used to predict the evolutionary trajectory of
mutation rate owing to the recurrent appearance and
fixation of variants.

The evolution of mutation rate is affected by the
combination of three factors: the cost of exact replica-
tion, the cost of deleterious mutations, and the advan-
tage of beneficial mutations. Since beneficial mutations
ultimately reach fixation, they cause in the same time
the fixation of all other polymorphisms (Maynard-
Smith and Haigh 1974); this is a selective sweep. In
particular, selective sweeps can cause the fixation of the
modifier gene itself. This is especially likely if the
modifier increases mutation rate and modifier individ-
uals thus generate beneficial mutations at a larger rate
than wild types. In this article, we analyzed the outcome
of each of these forces (cost of accuracy, deleteriousmu-
tations, and adaptivemutations) on the fate ofmodifiers
and on the long-term evolution of mutation rate.

Instability: A previous classical analytic study of mu-
tation rate evolution in asexuals (Leigh 1970) showed
that evolution leads to an intermediate evolutionarily
stable mutation rate (ESS), such that the overall ge-
nomic mutation rate (U ¼ mL) is exactly equal to the

rate of adaptation events (i.e., selective sweeps). In other
words, selection leads to amutation rate perfectly fitting
the pace of environmental changes. The results we
obtained in this article share similarity with those of
Leigh (1970). We showed that the effect of selection on
mutation rate leads to a convergence stable mutation
rate. In other words, when the resident mutation rate is
below (above) a certain level, any modifier with a larger
(smaller) mutation rate is favored. However, this con-
vergence stable mutation rate differs from the ESS
found by Leigh (1970) in two respects.
First, the overall genomic mutation rate at conver-

gence stability indeed increases with the rate of selective
sweep but, in contrast to that in Leigh (1970), it is not
equal to but always larger than this rate. In other words,
selection does not lead to a perfect fit between genomic
mutation rate and the pace of environmental changes.
Second, and more importantly, the convergence stable
mutation rate is not globally stable. When it is fixed
in a population, modifiers with a larger-than-resident
mutation rate that are able to invade the population
always exist. Further, in the case where the cost of rep-
lication accuracy is low, the convergence stable muta-
tion rate is not even locally stable. When it is fixed in a
population, any modifier of mutation rate is favored by
selection.
How can these two discrepancies between the present

model and Leigh’s (1970) model be explained? An
assumption, differing between both models, is actually
the key to these differences: the hypotheses on pop-
ulation size. In Leigh (1970), population size is infinite.
In consequence, each selective sweep corresponds to
the fixation of an infinite number of independent
mutations. At the end of the sweep, the modifier is
neither fixed nor lost and its frequency is not even
strongly affected by the sweep. In contrast, we consider
populations of finite and ‘‘reasonable’’ sizes: each
selective sweep is the fixation of a single independent
mutation (see also Johnson 1999a). In this case, at the
end of a sweep, the modifier and the resident are not
segregating anymore: one of them is fixed. This dra-
matic event constitutes a novel mechanism acting on
mutation rate evolution. Consider, for instance, a
modifier with a lower-than-resident mutation rate. This
modifier benefits from replication accuracy only during
the period preceding the selective sweep. Afterward, it is
either fixed or lost and thus not affected anymore by
selection. In other words, the occurrence of selective
sweeps, and hence of strong population bottlenecks,
not only favors a larger mutation rate, but also cancels
out the advantage of replication accuracy. This relaxa-
tion of selection, due to bottlenecks, explains the
finding of a larger convergence stable mutation rate
than that in Leigh (1970). In addition, modifiers with
a larger-than-resident mutation rate pay only the cost
of deleterious mutations in the phase preceding the
next selective sweep. In consequence, modifiers with
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a very strong mutation rate have an opportunity to
arise and play a destabilizing role, which is not the case
in Leigh (1970) as they are selected against in all
generations.

The instability of mutation rate has actually an im-
portant consequence. If potential modifiers all have
weak effects, then the evolutionary trajectory of muta-
tion rate should not be very different from what is ex-
pected in the case of evolutionary stability. Mutation
rate should converge toward the convergence-stable
value and stay in this region with only minor nonde-
tectable variations. However, if strong-effect modifiers
can also be generated, they may strongly affect the
evolutionary trajectory of mutation rate, as they can be
favored at any time, even if the population reaches local
stability. In consequence, the evolutionary trajectory of
the mutation rate is strongly dependent on its genetic
control. In fact, this is perfectly concordant with em-
pirical data on mutation rate evolution in bacteria.
During phases of adaptation, bacterial populations are
invaded by strong-effect modifiers called mutators, with
a mutation rate 10–10,000 times larger than that of wild
types, owing to a deficiency in a DNA reparation enzyme
(Miller 1996). Such mutators have been observed
repetitively both in vitro and in vivo (LeClerc et al. 1996;
Sniegowski et al. 1997, 2000; Mansky and Cunningham
2000;Oliver et al.2000;Denamur et al.2002;Richardson
et al. 2002; Shaver et al. 2002). Our theoretical results now
suggest that the emergence of these mutators is not an
anecdotic phenomenon, but is instead an inevitable and
universal outcome of adaptation in asexuals (see also
Sniegowski et al. 1997; Taddei et al. 1997; Kessler and
Levine 1998; Tenaillon et al. 1999; Travis and Travis
2002; Tanaka et al. 2003; Tannenbaum et al. 2003).

Further, from results such as Leigh’s (1970) it has
often been believed that, in asexuals, the conjunction of
the need for adaptation and the necessity to preserve
the genome could lead to an intermediate ‘‘optimal’’
mutation rate, perfectly fit to the rate of environmental
changes. This idea was even sometimes used to explain
the finding of a constant genomic mutation rate among
DNA microbes (Drake 1991; see also Orr 2000). Our
model shows that this is probably not an accurate
explanation. In asexuals, the need for both adaptation
and genome preservation is not an evolutionary force
that can stabilize mutation rate at an intermediate op-
timum. The cost of accurate DNA replication is a more
likely force yielding a stabilization of mutation rate.
Further, in the situations where this stabilizing cost is
important, then the actual influence of adaptation on
mutation rate evolution becomes negligible (see Fig-
ures 3 and 4). Therefore, when adaptation has a sig-
nificant role, it primarily destabilizes mutation rate and
yields the emergence of mutators during adaptation
phases. In addition, in sexual species, Johnson (1999a)
and Sniegowski et al. (2000) suggested that the effect of
adaptation on mutation rate evolution was unlikely to

be important because of recombination. Therefore, it
seems that, in both sexuals and asexuals, intermediate
stable mutation rates cannot be explained by the effect
of adaptation but more probably by the joint effects of
replication cost and the need for genome preservation
(see, for instance, Dawson 1998, 1999).

Leigh (1970) considers populations of infinite sizes.
We consider insteadpopulationswithfinite and ‘‘reason-
able’’ sizes such that each selective sweep is the fixation
of a single mutation. What might happen in intermedi-
ate cases where a finite number of independent adap-
tive mutations generate selective sweeps? Note, first,
that adaptive mutation rates are usually relatively
small. For instance, measuring the rate of evolution in
Escherichia coli populations, Rozen et al. (2002) and
Gerrish andLenski (1998) estimated that the numbers
of advantageous mutations per genome per replication
were, respectively, �5:93 10�8 and 23 10�9 (see also
Wilke 2004). Therefore, the independent generation
of several adaptive mutations occurs only in very large
populations. However, this may occur for sure in certain
cases and is indeed very difficult to model analytically.
After each selective sweep, the modifier reaches an
intermediate frequency, very different from the initial
one, and highly stochastic. Subsequently, the effect of
selection depends on this frequency, until the next
sweep, and so on. We cannot make a general prediction
on the evolution ofmutation rate in this case, apart from
the obvious statement that the larger population size
gets, the closer to Leigh (1970) the outcome will be.
Taddei et al. (1997), Tenaillon et al. (1999), and
Tanaka et al. (2003) actually performed simulations in
this general case. But simulations allow considering only
the dynamics of a givenmodifier in a given resident pop-
ulation and not the long-term evolution of mutation
rate.

Delayed cost: In classical views (e.g., Leigh 1970;
Johnson 1999a), the quantitative cost of deleterious
mutations does not affect the evolution of mutation
rate. Let us briefly explain why. Consider a lineage with a
given mutation rate, and thus a given mutational load,
and calculate the average fitness of individuals in that
lineage. Deleterious mutations with strong cost remain
in small frequency in the lineage, while those with
moderate cost become frequent. Owing to this com-
pensation, the mutational load in a lineage depends
only on mutation rate and is not affected by the quan-
titative cost of each deleterious mutation (Kimura and
Maruyama 1966). However, this simple result holds
only if the considered lineage has reached mutation–
selection balance. In this article, we are interested in a
situation where a lineage changes suddenly its muta-
tion rate by acquiring a modifier allele. In such a case,
the modifier lineage is not initially at mutation–
selection balance (see Johnson 1999b). We therefore
analyzed analytically the consequences of such initial
disequilibrium.
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Just after the appearance of a mutation rate modifier,
its genetic background is that of the resident. For in-
stance, a modifier with a larger-than-resident muta-
tion rate does not initially pay any cost from carrying
deleterious mutations, as it carries in expectation the
same mutations as the resident. Afterward, it will reach
its own mutation–selection balance and end up with its
own, larger, mutational load. The quantitative cost of
each deleterious mutation does not affect the ultimate
load at mutation–selection balance; however, it strongly
affects the time required to reach this balance (see
also Johnson 1999b). If deleterious mutations are,
say, lethal, then the modifier reaches its own mutation–
selection balance in a single generation, as it generates
right away fewer living offspring than the resident. In
contrast, if deleterious mutations have a very weak cost,
then it can take a very large number of generations for
the modifier to reach its own balance. In this last case, a
modifier with a largemutation rate benefits from a delay
before having to actually pay the cost of its mutation
rate. Interestingly, during this time it can nonetheless
generate an adaptive mutation and thus benefit from its
large mutation rate. Our model does not allow us to
examine the case where deleterious mutations have an
extremely weak effect, but it provides us with a good
insight into it (see Figure 2). In all cases, one can state
that the less costly are the deleterious mutations, the
stronger is selection in favor of modifiers with a larger-
than-resident mutation rate, because they may gen-
erate a selective sweep before having paid the cost of
deleterious mutations. This confirms a somehow in-
tuitive idea that no previous model could comprehend
(see discussion by Johnson 1999b).

Critical mass: Finally, we pointed out a third impor-
tant effect. As discussed above, the frequency of selective
sweeps in a population is a key determinant of the
evolution of mutation rate. Interestingly, in a popula-
tion of finite size, this frequency does rely not only
on the rate of environmental changes, but also on the
capacity of the population to generate genetic diversity
and henceforth on the average mutation rate in the
population. The resident mutation rate itself thus partly
determines the selective pressure acting onmodifiers of
mutation rate. Our theoretical model shows that, owing
to this feedback, population size controls the outcome
of evolution.

In small populations, selective sweeps stay rare even
for fairly high resident mutation rates. As a result,
selection favors modifiers with a lower-than-resident
mutation rate, and the mutation rate thus decreases
through evolution. In turn, this reduction of mutation
rate lessens the frequency of selective sweeps, which
favors modifiers with even lower mutation rates. Ulti-
mately, this positive feedback yields a blockade of the
population at the lowest mutation rate attainable with
reasonable accuracy costs. In other words, small pop-
ulations follow a reduction principle (Liberman and

Feldman 1986) and evolve toward a strategy of genomic
preservation. Everything happens as if the only two
forces acting on mutation rate were the cost of accuracy
and the cost of deleterious mutations.
In large populations, selective sweeps are relatively

frequent, even for fairly low resident mutation rates.
Therefore, individuals cannot afford to preserve their
genome, because the risk to be eliminated at the next
selective sweep is too important. Individuals thus evolve
toward a nonminimal mutation rate, a strategy of adap-
tation. In other words, in large populations, a critical
mass is attained abovewhich adaptationbecomes a selec-
tive force per se, affecting mutation rate and promoting
in turn an even larger adaptive potential. In certain
cases, if environmental variations are very rapid, this
can even lead to an evolutionary runaway in the popula-
tion. The large mutation rate allows the generation of
more genetic diversity. If the environment is changing
fast then this diversity causes numerous selective sweeps,
favoring modifiers with an even larger mutation rate,
and so on. The finding of a larger mutation rate in
larger populations confirms results obtained from sim-
ulations, showing that mutators invade large popula-
tions more easily (Taddei et al. 1997; Tenaillon et al.
1999).
Individual selection differs from ‘‘optimization’’:

The evolution of mutation rate, and more generally of
‘‘evolvability,’’ has often been thought of in terms of
implicit group selection. One seeks for the mutation
rate that maximizes the average fitness in the popula-
tion or maximizes the rate of adaptation (Kimura 1967;
Eshel 1973; Painter 1975; Radman et al. 1999, 2000;
Orr 2000; Radman 2001; Johnson and Barton 2002).
Here we show that selection within populations does not
follow this optimization principle.
Consider, for instance, the effect of population size

in a parameter range where Muller’s ratchet does not
operate. Small populations ‘‘need’’ large mutation rates
to compensate for their small size and hence to be able
to adapt.While large populations do not require so high
mutation rates, as they can generate favorable muta-
tions easily even with a low error rate. However, com-
petition within populations does not obey such a
rationale. Small populations not only generate little
diversity owing to their small size, but also evolve toward
a minimal mutation rate, which may totally prevent
them from adapting. In contrast, owing to a within-
population adaptive race between individuals, large
populations evolve toward mutation rates that are much
higher than what would be needed simply to follow the
pace of environmental changes.
A second example comes from the effect of deleteri-

ousmutations. When deleteriousmutations have a weak
effect, they are particularly dangerous for populations
as they accumulate in larger frequency. This type of
argument has led, for instance, Orr (2000) to argue
that, to maximize their rate of adaptation, populations
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should have a lower mutation rate when deleterious
mutations are of weak effect. Paradoxically, our model
shows the opposite, owing to within-population com-
petition. When deleterious mutations are of weak ef-
fect, modifiers with large mutation rates invade very
easily, even though they then cause the frequency of
deleterious mutations to reach dangerously high levels.

Clearly, selection on the higher level, owing to com-
petition between populations (e.g., between bacterial
infections), should also affect the evolution of genetic
systems and in particular of mutation rate. Such selec-
tion should lead to patterns that are closer to optimiza-
tion principles. However, the consideration of natural
selection acting at the level of entire populations re-
quires building different models and is totally distinct
from the problem raised in this article.
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624 J.-B. André and B. Godelle



APPENDIX A: HYPOTHESIS 2—RUBY IN
THE RUBBISH

Here we describe the same models as in the text, but
under the second hypothesis (ruby in the rubbish). This
hypothesis assumes that deleterious mutations are
stronger than favorable ones. Therefore favorable
mutations can fix only if they appear in individuals
carrying none but the minimal number of deleterious
mutations.

Conditional on the presence of a selective pressure,
the probabilities that in generation t, the modifier [in
frequency pðtÞ] and wild-type subpopulations generate
an adaptive mutation destined to fix are, respectively,

Mt ¼ Np � u9 � p0ðtÞ ðA1Þ

and

Rt ¼ Np � u � ð1� pðtÞÞ � expð�U =sdÞ; ðA2Þ

where p is the average fixation probability of an
advantageous mutation occurring in a nondeleterious
background. We recall that expð�U =sdÞ is the fraction
of nondeleterious individuals among wild types, at
mutation–selection balance, if all deleterious mutations
have the same cost sd.

According to hypothesis 2, and writing p0 for the
frequency of nondeleterious modifiers at the focal
generation, the expected frequency of modifiers at the
end of the sweep can also be found asM=ðM 1RÞ from
Equations A1 and A2. If the modifier is rare in the focal
generation [pðtÞ>1] this gives

m9

m
� expðU =sdÞ � p0: ðA3Þ

If the modifier is at mutation–selection balance, then
we have p0 ¼ expð�U 9=sdÞ � p and Equation A3 can be
written as p � e�dL=sd � m9=m. Comparing this result with
Equation 17 (in the case where m � m) shows that,
regarding selective sweeps, the effect of the ruby in the
rubbish hypothesis is merely to reduce the efficient
number of modifiers by a factor e�dL=sd.

Here we write a general model, valid whether sweeps
occur at a constant rate K (model A) or at a varying rate
S � R (model B). The per-generation probability of
sweep is written P in the general case. The recurrence
equation giving the probability of fixation of the
modifier in generation t (see Equation 19) is written as

Ft11 ¼ Ft 1 ð1� PÞtPm9
m

exp U =sdð Þ � E ½p0ðtÞ�; ðA4Þ

where E p0ðtÞ½ � is the expected frequency of nondelete-
rious modifiers, given by Equation 4. The equivalent of
Equation 20 is then found as

F‘ ¼ P

1� ð1� PÞe�dL � m1 d

m
� pð0Þ ¼ w‘ðm; dÞ � pð0Þ;

ðA5Þ

where one can also verify that w‘ðm; 0Þ ¼ 1.
The direction of selection on the modifier is finally

found as SelðmÞ ¼ @w‘ðm; dÞ=@djd¼0. After simplifica-
tion one can show that it is of the same sign as

1� mL
1� P

P

� �
: ðA6Þ

In a purpose of comparison, let us recall the general
result obtained under the opposite hypothesis (i.e.,
deleterious mutations do not affect the probability of
fixation of advantageous ones). Under hypothesis 1 (see
Equation 21), the direction of selection on mutation
rate is given by the sign of

1� mL
1� P

P
� 1

sd

� �
; ðA7Þ

which is also valid whether the rate of selective sweep is a
constant P ¼ K (model A) or a variable product
P ¼ S � R (model B).
The mere observable difference between Equations

A6 and A7 is the absence of the delay in the former.
Under the ruby in the rubbish hypothesis (Equation
A6), a modifier with larger-than-resident mutation rate
pays the cost of deleterious mutations immediately after
introduction, because all deleterious-carrying individu-
als are dead end. On the contrary, a modifier with a
lower-than-resident mutation rate receives, without de-
lay, the benefit of fidelity.
The direction of selection under the ruby in the

rubbish hypothesis (Equation A6) actually has a some-
what intuitive interpretation. Consider a single selective
sweep, as a unitary event favoring larger mutation rates.
For this event, any given individual undergoes in
expectation ð1� PÞ=P generations free of sweep, dur-
ing which it may generate a deleterious mutation with a
probability mL. The direction of selection on mutation
rate is found by comparing the number of sweeps on
one side (equal to 1) and the overall risk to generate a
deleteriousmutation before the sweep on the other side
fmL ð1� PÞ=P½ �g. Note that the same reasoning applies
under hypothesis 1. The only difference is that the
number of generations before the sweep must be
discounted by the delay 1=sd (Equation A7).
Model A—constant rate of selective sweeps: In this

model, the per-generation probability of sweep is a
constant P ¼ K . From Equation A6, there is a single
singular strategy mconv with

Lmconv ¼
K

1� K
; ðA8Þ

which is convergence stable but not ESS stable; i.e.,
evolution is converging tomconv, but then anymodifier is
favored. In this model, the only difference with hypoth-
esis 1 is actually the absence of delay.
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Models B and C—ecological scenario: In this model,
the per-generation probability of sweep writes into the
form of a product P ¼ S � R , where S is the per-
generation probability that a selective pressure is pres-
ent and R is the probability of sweep conditional on the
presence of a selective pressure. This adds a further
difference between hypotheses 1 and 2, hidden into the
sweep probability, R. Under hypothesis 1, this probabil-
ity was given by RðmÞ ¼ Npl � m. Whereas, under hy-
pothesis 2, R is affected by the presence of deleterious
mutations, writing R ¼ Npl � m � expð�mL=sdÞ. Finally,
the probability of selective pressure depends on the
ecological scenario. In model B, this probability is given
by Equation 24. In model C, the population is always
under a selective pressure (S ¼ 1). In both models, re-
placing P by the appropriate value of the product S � R
into Equation A6 gives the direction of selection on
mutation rate. In this case, however, the singular strat-
egies cannot be found analytically. Numerical analyses
show that the results are qualitatively identical to that
found under hypothesis 1 (not shown).

APPENDIX B—COST OF FIDELITY

Here we describe the direct effect of mutation rate on
fitness. Minimizing the number of errors in replication
is costly for biological systems, as for any replicating
system. Replicating without error is impossible; hence
the fitness of an individual with a nil mutation rate must
be zero. However, reproducing is not only a matter of
copyingDNA; hence various other factors are restricting
fitness, even when the error rate is high. We recall that m
is the mutation rate per base pair. The fecundity of a
nondeleterious individual with mutation rate m is
written, relative to a maximal attainable fecundity of 1,
as wcðmÞ ¼ m=ð f 1mÞ, where f is the mutation rate
where half of the maximum fecundity is attained
[wcðmÞ ¼ 0:5]. Fecundity increases approximately line-
arly with low mutation rates and saturates toward 1 for
higher rates. If f is very low, then the saturation occurs
for low mutation rates; i.e., the fecundity is always
maximal [wcðmÞ ¼ 1] for any mutation rate, but sud-
denly tends linearly toward zero when themutation rate

comes very close to zero. If f is higher, then the
saturation occurs for higher mutation rates. The value
of f can depend not only upon physiological factors (e.g.,
the energetic cost of DNA proofreading) but also upon
ecological factors (e.g., the strength of selection in favor
of rapid replication).

Consider a rare modifier of mutation rate m in a
resident population of mutation ratem9 ¼ m1 d. Owing
to fidelity cost, the modifier’s frequency is multiplied in
each generation by the ratio of its fecundity over the
average fecundity in the population, wcðm9Þ=wcðmÞ. This
effect is integrated into the equations giving the ex-
pected frequency of the modifier after t generations
(Equation 4 under hyp. 2 and Equation 12 under
hyp. 1).

Under hypothesis 2 (ruby in the rubbish), the di-
rection of selection on the modifier is then found as

SelðmÞ ¼ 1� mL � f

f 1m

� �
1� P

P

� �
; ðB1Þ

and under hypothesis 1, the direction of selection is
given by

SelðmÞ ¼ 1� mL
1� P

P
� 1

sd

� �
1

f

f 1m

1� P

P

� �
: ðB2Þ

These two equations must be compared with the
neutral results (no direct selection) given by Equations
A6 and A7. The ruby in the rubbish case is simpler
because of the absence of delay. The cost of accuracy
appears in Equation B1 as a factor f =ð f 1mÞ, causing
selection in favor of larger mutation rate. Quite in-
tuitively, the quantitative effect of this factor is pro-
portional to the ratio ð1� PÞ=P , measuring the
expected number of generations lived by a modifier
before the selective sweep. The cost of accuracy appears
in the exact sameway underhypothesis 1 (EquationB2).
This cost is paid during the entire ð1� PÞ=P genera-
tions before the sweep, while the cost of deleterious
mutations (mL) is paid after a delay 1=sd. These
equations are then solved to describe the evolutionary
trajectory of mutation rate. The results are given in the
main text of this article.

626 J.-B. André and B. Godelle


